Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Mitosis of somatic cells produces a daughter cell. Apoptosis, a naturally programmed cellular death mechanism, kills abnormal cells produced by mitosis. Cancer can develop when this equilibrium is disrupted, either by an upsurge in cell propagation or a reduction in tissue demise. Cancer therapy aims to cause cancer cells to die while inflicting little harm to healthy cells. This review of apoptotic mechanism processes improves our understanding of how certain malignancies begin and develop. The current cancer treatments can operate either by inducing apoptosis or causing direct cell damage. An insight into the resistance to apoptosis may explicate why malignancy treatments fail in some situations. New therapies grounded on our understanding of apoptotic processes are being developed to induce apoptosis of cancer cells while limiting the simultaneous death of normal cells. Various biological activities require redox equilibrium to function properly.

Antineoplastic medications that cause oxidative stress by raising ROS and blocking antioxidant mechanisms have recently attracted much interest. The rapid accumulation of ROS impairs redox balance and damages cancer cells severely. Here, we discuss ROS-instigating malignancy therapy and the antineoplastic mechanism used by prooxidative drugs.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429273223231124072223
2024-01-16
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429273223.html?itemId=/content/journals/cmp/10.2174/0118761429273223231124072223&mimeType=html&fmt=ahah

References

  1. GodmanC.A. JoshiR. TierneyB.R. GreenspanE. RasmussenT.P. WangH. ShinD.G. RosenbergD.W. GiardinaC. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling.Cancer Biol. Ther.20087101570158010.4161/cbt.7.10.656118769117
    [Google Scholar]
  2. KumarD. KaratiD. MahadikK.R. TrivediP. Alkylating agents, the road less traversed, changing anticancer therapy.Anticancer. Agents Med. Chem.20222281478149510.2174/187152062166621081110534434382529
    [Google Scholar]
  3. KaratiD. MahadikK.R. TrivediP. KumarD. Molecular insights on selective and specific inhibitors of Cyclin Dependent Kinase 9 enzyme (CDK9) for the purpose of cancer therapy.Anticancer. Agents Med. Chem.202223438340310.2174/187152062266622061512582635708082
    [Google Scholar]
  4. KaratiD. MahadikK.R. TrivediP. KumarD. The emerging role of janus kinase inhibitors in the treatment of cancer.Curr. Cancer Drug Targets202222322123310.2174/156800962266622030110521435232350
    [Google Scholar]
  5. KaratiD. ShaooK.K. MahadikK.R. KumrD. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective.Results in Chemistry2022410053210.1016/j.rechem.2022.100532
    [Google Scholar]
  6. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms1902044829393886
    [Google Scholar]
  7. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑918626751
    [Google Scholar]
  8. WolffM.E. Burgerʼs medicinal chemistry and drug discovery.Am. J. Ther.19963860810.1097/00045391‑199608000‑00012
    [Google Scholar]
  9. KushiL.H. DoyleC. McCulloughM. RockC.L. Demark-WahnefriedW. BanderaE.V. GapsturS. PatelA.V. AndrewsK. GanslerT. American Cancer Society guidelines on nutrition and physical activity for cancer prevention.CA Cancer J. Clin.2012621306710.3322/caac.2014022237782
    [Google Scholar]
  10. GiriB. GomesA. DebnathA. SahaA. BiswasA.K. DasguptaS.C. GomesA. Antiproliferative, cytotoxic and apoptogenic activity of Indian toad (Bufo melanostictus, Schneider) skin extract on U937 and K562 cells.Toxicon200648438840010.1016/j.toxicon.2006.06.01116889807
    [Google Scholar]
  11. MbavengA.T. KueteV. MapunyaB.M. BengV.P. NkengfackA.E. MeyerJ.J.M. LallN. Evaluation of four Cameroonian medicinal plants for anticancer, antigonorrheal and antireverse transcriptase activities.Environ. Toxicol. Pharmacol.201132216216710.1016/j.etap.2011.04.00621843795
    [Google Scholar]
  12. BursteinH.J. SchwartzR.S. Molecular origins of cancer.N. Engl. J. Med.2008358552710.1056/NEJMe080006518234758
    [Google Scholar]
  13. KuperH. AdamiH.O. BoffettaP. Tobacco use, cancer causation and public health impact.J. Intern. Med.2002251645546610.1046/j.1365‑2796.2002.00993.x12028500
    [Google Scholar]
  14. GoubranH.A. KotbR.R. StakiwJ. EmaraM.E. BurnoufT. Regulation of tumor growth and metastasis: the role of tumor microenvironment.Cancer Growth Metastasis20147CGM.S1128510.4137/CGM.S1128524926201
    [Google Scholar]
  15. SinghP. SinghC.L. Chemical investigations of Clerodendraon fragrans.J. Indian Chem. Soc.198158626627
    [Google Scholar]
  16. TanS. LiD. ZhuX. Cancer immunotherapy: Pros, cons and beyond.Biomed. Pharmacother.202012410982110.1016/j.biopha.2020.10982131962285
    [Google Scholar]
  17. McIlwainD.R. BergerT. MakT.W. Caspase functions in cell death and disease.Cold Spring Harb. Perspect. Biol.201354a00865610.1101/cshperspect.a00865623545416
    [Google Scholar]
  18. HetzC. BernasconiP. FisherJ. LeeA.H. BassikM.C. AntonssonB. BrandtG.S. IwakoshiN.N. SchinzelA. GlimcherL.H. KorsmeyerS.J. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha.Science2006312577357257610.1126/science.112348016645094
    [Google Scholar]
  19. HassanM. WatariH. AbuAlmaatyA. OhbaY. SakuragiN. Apoptosis and molecular targeting therapy in cancer.BioMed Res. Int.2014201412310.1155/2014/15084525013758
    [Google Scholar]
  20. BiW. YangM. XingP. HuangT. MicroRNA miR-331-3p suppresses osteosarcoma progression via the Bcl-2/Bax and Wnt/β-Catenin signaling pathways and the epithelial-mesenchymal transition by targeting N-acetylglucosaminyltransferase I (MGAT1).Bioengineered2022136141591417410.1080/21655979.2022.208385535758024
    [Google Scholar]
  21. ZamanS. WangR. GandhiV. Targeting the apoptosis pathway in hematologic malignancies.Leuk. Lymphoma20145591980199210.3109/10428194.2013.85530724295132
    [Google Scholar]
  22. LomonosovaE. ChinnaduraiG. BH3-only proteins in apoptosis and beyond: an overview.Oncogene200827S1S2S1910.1038/onc.2009.3919641503
    [Google Scholar]
  23. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/0192623070132033717562483
    [Google Scholar]
  24. GreenD.R. LlambiF. Cell death signaling.Cold Spring Harb. Perspect. Biol.2015712a00608010.1101/cshperspect.a00608026626938
    [Google Scholar]
  25. GoldarS. KhanianiM.S. DerakhshanS.M. BaradaranB. Molecular mechanisms of apoptosis and roles in cancer development and treatment.Asian Pac. J. Cancer Prev.20151662129214410.7314/APJCP.2015.16.6.212925824729
    [Google Scholar]
  26. LiuH. SuD. ZhangJ. GeS. LiY. WangF. GravelM. RoulstonA. SongQ. XuW. LiangJ.G. ShoreG. WangX. LiangP. Improvement of pharmacokinetic profile of TRAIL via trimer-tage enhances its antitumor activity in vivo.Sci. Rep.201771895310.1038/s41598‑017‑09518‑128827692
    [Google Scholar]
  27. RadfordI.R. MurphyT.K. RadleyJ.M. EllisS.L. Radiation response of mouse lymphoid and myeloid cell lines. Part II. Apoptotic death is shown by all lines examined.Int. J. Radiat. Biol.199465221722710.1080/095530094145502517907119
    [Google Scholar]
  28. Cohen-JonathanE. BernhardE.J. McKennaW.G. How does radiation kill cells?Curr. Opin. Chem. Biol.199931778310.1016/S1367‑5931(99)80014‑310021401
    [Google Scholar]
  29. ErikssonD. StigbrandT. Radiation-induced cell death mechanisms.Tumour Biol.201031436337210.1007/s13277‑010‑0042‑820490962
    [Google Scholar]
  30. NguyenH.Q. ToN.H. ZadigueP. KerbratS. De La TailleA. Le GouvelloS. BelkacemiY. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review.Crit. Rev. Oncol. Hematol.2018129132610.1016/j.critrevonc.2018.06.01230097231
    [Google Scholar]
  31. FridmanJ.S. LoweS.W. Control of apoptosis by p53.Oncogene200322569030904010.1038/sj.onc.120711614663481
    [Google Scholar]
  32. SkinnerH.D. SandulacheV.C. OwT.J. MeynR.E. YordyJ.S. BeadleB.M. FitzgeraldA.L. GiriU. AngK.K. MyersJ.N. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence.Clin. Cancer Res.201218129030010.1158/1078‑0432.CCR‑11‑226022090360
    [Google Scholar]
  33. SoussiT. BéroudC. Assessing TP53 status in human tumours to evaluate clinical outcome.Nat. Rev. Cancer20011323323910.1038/3510600911902578
    [Google Scholar]
  34. DillonM.T. GoodJ.S. HarringtonK.J. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy.Clin. Oncol.201426525726510.1016/j.clon.2014.01.00924581946
    [Google Scholar]
  35. WoutersB.G. GiacciaA.J. DenkoN.C. BrownJ.M. Loss of p21Waf1/Cip1 sensitizes tumors to radiation by an apoptosis-independent mechanism.Cancer Res.19975721470347069354425
    [Google Scholar]
  36. BrownJ.M. WoutersB.G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents.Cancer Res.19995971391139910197600
    [Google Scholar]
  37. ForresterH.B. VidairC.A. AlbrightN. LingC.C. DeweyW.C. Using computerized video time lapse for quantifying cell death of X-irradiated rat embryo cells transfected with c-myc or c-Ha-ras.Cancer Res.199959493193910029087
    [Google Scholar]
  38. EndlichB. RadfordI.R. ForresterH.B. DeweyW.C. Computerized video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosis-related apoptosis in lymphoid cells.Radiat. Res.20001531364810.1667/0033‑7587(2000)153[0036:CVTLMS]2.0.CO;210630976
    [Google Scholar]
  39. WartersR.L. HoferK.G. HarrisC.R. SmithJ.M. Radionuclide toxicity in cultured mammalian cells: Elucidation of the primary site of radiation damage.Curr. Top. Radiat. Res. Q.1978121-4389407565271
    [Google Scholar]
  40. VerheijM. BartelinkH. Radiation-induced apoptosis.Cell Tissue Res.2000301113314210.1007/s00441000018810928286
    [Google Scholar]
  41. FrankenN.A.P. ten CateR. KrawczykP.M. StapJ. HavemanJ. AtenJ. BarendsenG.W. Comparison of RBE values of high- LET α-particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death.Radiat. Oncol.2011616410.1186/1748‑717X‑6‑6421651780
    [Google Scholar]
  42. PintoM. PriseK.M. MichaelB.D. Evidence for complexity at the nanometer scale of radiation-induced DNA DSBs as a determinant of rejoining kinetics.Radiat. Res.20051641738510.1667/RR339415966767
    [Google Scholar]
  43. ParkH.J. LyonsJ.C. OhtsuboT. SongC.W. Cell cycle progression and apoptosis after irradiation in an acidic environment.Cell Death Differ.20007872973810.1038/sj.cdd.440070210918447
    [Google Scholar]
  44. StorzP. Reactive oxygen species in tumor progression.Front. Biosci.2005101-31881189610.2741/166715769673
    [Google Scholar]
  45. SzatrowskiT.P. NathanC.F. Production of large amounts of hydrogen peroxide by human tumor cells.Cancer Res.19915137947981846317
    [Google Scholar]
  46. BabiorB.M. NADPH oxidase: An update.Blood19999351464147610.1182/blood.V93.5.146410029572
    [Google Scholar]
  47. TannockI.F. LeeC. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs.Br. J. Cancer200184110010510.1054/bjoc.2000.153811139321
    [Google Scholar]
  48. StorzP. Mitochondrial ROS – radical detoxification, mediated by protein kinase D.Trends Cell Biol.2007171131810.1016/j.tcb.2006.11.00317126550
    [Google Scholar]
  49. TrachoothamD. AlexandreJ. HuangP. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?Nat. Rev. Drug Discov.20098757959110.1038/nrd280319478820
    [Google Scholar]
  50. StorzP. DöpplerH. CoplandJ.A. SimpsonK.J. TokerA. FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases.Mol. Cell. Biol.200929184906491710.1128/MCB.00077‑0919564415
    [Google Scholar]
  51. LiouG.Y. StorzP. Reactive oxygen species in cancer.Free Radic. Res.201044547949610.3109/1071576100366755420370557
    [Google Scholar]
  52. FloresE.R. Commentary on “Apoptosis, p53, and Tumor Cell Sensitivity to Anticancer Agents”.Cancer Res.201676236763676410.1158/0008‑5472.CAN‑16‑299727909063
    [Google Scholar]
  53. CerriF. SaliuF. MaggioniD. MontanoS. SevesoD. LavoranoS. ZoiaL. GosettiF. LasagniM. OrlandiM. Taglialatela-ScafatiO. GalliP. Cytotoxic compounds from Alcyoniidae: An overview of the last 30 years.Mar. Drugs202220213410.3390/md2002013435200663
    [Google Scholar]
  54. KaufmannS.H. VauxD.L. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance.Oncogene200322477414743010.1038/sj.onc.120694514576849
    [Google Scholar]
  55. FuldaS. Evasion of apoptosis as a cellular stress response in cancer.Int. J. Cell Biol.201020101610.1155/2010/37083520182539
    [Google Scholar]
  56. ZhaoW. JaganathanS. TurksonJ. A cell-permeable Stat3 SH2 domain mimetic inhibits Stat3 activation and induces antitumor cell effects in vitro.J. Biol. Chem.201028546358553586510.1074/jbc.M110.15408820807764
    [Google Scholar]
  57. LiaoZ. LutzJ. NevalainenM.T. Transcription factor Stat5a/b as a therapeutic target protein for prostate cancer.Int. J. Biochem. Cell Biol.201042218619210.1016/j.biocel.2009.11.00119914392
    [Google Scholar]
  58. TibesR. BogenbergerJ.M. Transcriptional silencing of MCL-1 through cyclin-dependent kinase inhibition in acute myeloid leukemia.Front. Oncol.20199120510.3389/fonc.2019.0120531921615
    [Google Scholar]
  59. ScraceS.F. KierstanP. BorgognoniJ. WangL.Z. DennyS. WayneJ. BentleyC. CansfieldA.D. JacksonP.S. LockieA.M. CurtinN.J. NewellD.R. WilliamsonD.S. MooreJ.D. Transient treatment with CDK inhibitors eliminates proliferative potential even when their abilities to evoke apoptosis and DNA damage are blocked.Cell Cycle20087243898390710.4161/cc.7.24.734519066469
    [Google Scholar]
  60. GojoI. ZhangB. FentonR.G. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1.Clin. Cancer Res.20028113527353812429644
    [Google Scholar]
  61. MacCallumD.E. MelvilleJ. FrameS. WattK. AndersonS. Gianella-BorradoriA. LaneD.P. GreenS.R. Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1.Cancer Res.200565125399540710.1158/0008‑5472.CAN‑05‑023315958589
    [Google Scholar]
  62. RajeN. KumarS. HideshimaT. RoccaroA. IshitsukaK. YasuiH. ShiraishiN. ChauhanD. MunshiN.C. GreenS.R. AndersonK.C. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma.Blood200510631042104710.1182/blood‑2005‑01‑032015827128
    [Google Scholar]
  63. SantoL. ValletS. HideshimaT. CirsteaD. IkedaH. PozziS. PatelK. OkawaY. GorgunG. PerroneG. CalabreseE. YuleM. SquiresM. LadettoM. BoccadoroM. RichardsonP.G. MunshiN.C. AndersonK.C. RajeN. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3β activation and RNA polymerase II inhibition.Oncogene201029162325233610.1038/onc.2009.51020101221
    [Google Scholar]
  64. Kauffmann-ZehA. Rodriguez-VicianaP. UlrichE. GilbertC. CofferP. DownwardJ. EvanG. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB.Nature1997385661654454810.1038/385544a09020362
    [Google Scholar]
  65. LeblancV. DelumeauI. TocquéB. Ras-GTPase activating protein inhibition specifically induces apoptosis of tumour cells.Oncogene199918344884488910.1038/sj.onc.120285510490822
    [Google Scholar]
  66. KomarovP.G. KomarovaE.A. KondratovR.V. Christov-TselkovK. CoonJ.S. ChernovM.V. GudkovA.V. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy.Science199928554341733173710.1126/science.285.5434.173310481009
    [Google Scholar]
  67. GalluzziL. Bravo-San PedroJ.M. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AlnemriE.S. AltucciL. AndrewsD. Annicchiarico-PetruzzelliM. BaehreckeE.H. BazanN.G. BertrandM.J. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BredesenD.E. BrennerC. CampanellaM. CandiE. CecconiF. ChanF.K. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK-M. Di DanieleN. DixitV.M. DynlachtB.D. El-DeiryW.S. FimiaG.M. FlavellR.A. FuldaS. GarridoC. GougeonM-L. GreenD.R. GronemeyerH. HajnoczkyG. HardwickJ.M. HengartnerM.O. IchijoH. JosephB. JostP.J. KaufmannT. KeppO. KlionskyD.J. KnightR.A. KumarS. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LugliE. MadeoF. MalorniW. MarineJ-C. MartinS.J. MartinouJ-C. MedemaJ.P. MeierP. MelinoS. MizushimaN. MollU. Muñoz-PinedoC. NuñezG. OberstA. PanaretakisT. PenningerJ.M. PeterM.E. PiacentiniM. PintonP. PrehnJ.H. PuthalakathH. RabinovichG.A. RavichandranK.S. RizzutoR. RodriguesC.M. RubinszteinD.C. RudelT. ShiY. SimonH-U. StockwellB.R. SzabadkaiG. TaitS.W. TangH.L. TavernarakisN. TsujimotoY. Vanden BergheT. VandenabeeleP. VillungerA. WagnerE.F. WalczakH. WhiteE. WoodW.G. YuanJ. ZakeriZ. ZhivotovskyB. MelinoG. KroemerG. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015.Cell Death Differ.2015221587310.1038/cdd.2014.13725236395
    [Google Scholar]
  68. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  69. MonteroJ. SarosiekK.A. DeAngeloJ.D. MaertensO. RyanJ. ErcanD. PiaoH. HorowitzN.S. BerkowitzR.S. MatulonisU. JänneP.A. AmreinP.C. CichowskiK. DrapkinR. LetaiA. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy.Cell2015160597798910.1016/j.cell.2015.01.04225723171
    [Google Scholar]
  70. GalluzziL. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AgostinisP. AlnemriE.S. AltucciL. AmelioI. AndrewsD.W. Annicchiarico-PetruzzelliM. AntonovA.V. AramaE. BaehreckeE.H. BarlevN.A. BazanN.G. BernassolaF. BertrandM.J.M. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BoyaP. BrennerC. CampanellaM. CandiE. Carmona-GutierrezD. CecconiF. ChanF.K.M. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. CohenG.M. ConradM. Cubillos-RuizJ.R. CzabotarP.E. D’AngiolellaV. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK.M. DeBerardinisR.J. DeshmukhM. Di DanieleN. Di VirgilioF. DixitV.M. DixonS.J. DuckettC.S. DynlachtB.D. El-DeiryW.S. ElrodJ.W. FimiaG.M. FuldaS. García-SáezA.J. GargA.D. GarridoC. GavathiotisE. GolsteinP. GottliebE. GreenD.R. GreeneL.A. GronemeyerH. GrossA. HajnoczkyG. HardwickJ.M. HarrisI.S. HengartnerM.O. HetzC. IchijoH. JäätteläM. JosephB. JostP.J. JuinP.P. KaiserW.J. KarinM. KaufmannT. KeppO. KimchiA. KitsisR.N. KlionskyD.J. KnightR.A. KumarS. LeeS.W. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LoweS.W. LueddeT. LugliE. MacFarlaneM. MadeoF. MalewiczM. MalorniW. ManicG. MarineJ.C. MartinS.J. MartinouJ.C. MedemaJ.P. MehlenP. MeierP. MelinoS. MiaoE.A. MolkentinJ.D. MollU.M. Muñoz-PinedoC. NagataS. NuñezG. OberstA. OrenM. OverholtzerM. PaganoM. PanaretakisT. PasparakisM. PenningerJ.M. PereiraD.M. PervaizS. PeterM.E. PiacentiniM. PintonP. PrehnJ.H.M. PuthalakathH. RabinovichG.A. RehmM. RizzutoR. RodriguesC.M.P. RubinszteinD.C. RudelT. RyanK.M. SayanE. ScorranoL. ShaoF. ShiY. SilkeJ. SimonH.U. SistiguA. StockwellB.R. StrasserA. SzabadkaiG. TaitS.W.G. TangD. TavernarakisN. ThorburnA. TsujimotoY. TurkB. Vanden BergheT. VandenabeeleP. Vander HeidenM.G. VillungerA. VirginH.W. VousdenK.H. VucicD. WagnerE.F. WalczakH. WallachD. WangY. WellsJ.A. WoodW. YuanJ. ZakeriZ. ZhivotovskyB. ZitvogelL. MelinoG. KroemerG. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑429362479
    [Google Scholar]
  71. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: An evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc359924060863
    [Google Scholar]
  72. NgK.P. HillmerA.M. ChuahC.T.H. JuanW.C. KoT.K. TeoA.S.M. AriyaratneP.N. TakahashiN. SawadaK. FeiY. SohS. LeeW.H. HuangJ.W.J. AllenJ.C.Jr WooX.Y. NagarajanN. KumarV. ThalamuthuA. PohW.T. AngA.L. MyaH.T. HowG.F. YangL.Y. KohL.P. ChowbayB. ChangC.T. NadarajanV.S. ChngW.J. ThanH. LimL.C. GohY.T. ZhangS. PohD. TanP. SeetJ.E. AngM.K. ChauN.M. NgQ.S. TanD.S.W. SodaM. IsobeK. NöthenM.M. WongT.Y. ShahabA. RuanX. Cacheux-RataboulV. SungW.K. TanE.H. YatabeY. ManoH. SooR.A. ChinT.M. LimW.T. RuanY. OngS.T. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer.Nat. Med.201218452152810.1038/nm.271322426421
    [Google Scholar]
  73. HataA.N. YeoA. FaberA.C. LifshitsE. ChenZ. ChengK.A. WaltonZ. SarosiekK.A. LetaiA. HeistR.S. Mino-KenudsonM. WongK.K. EngelmanJ.A. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers.Cancer Res.201474113146315610.1158/0008‑5472.CAN‑13‑372824675361
    [Google Scholar]
  74. LiY.Q. PengJ.J. PengJ. LuoX.J. The deafness gene GSDME: Its involvement in cell apoptosis, secondary necrosis, and cancers.Naunyn Schmiedebergs Arch. Pharmacol.201939291043104810.1007/s00210‑019‑01674‑731230091
    [Google Scholar]
  75. FengY. KeC. TangQ. DongH. ZhengX. LinW. KeJ. HuangJ. YeungS-C.J. ZhangH. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling.Cell Death Dis.201452e108810.1038/cddis.2014.5924577086
    [Google Scholar]
  76. Vara-PerezM. Felipe-AbrioB. AgostinisP. Mitophagy in Cancer: A Tale of Adaptation.Cells20198549310.3390/cells805049331121959
    [Google Scholar]
  77. ChangJ.Y. YiH.S. KimH.W. ShongM. Dysregulation of mitophagy in carcinogenesis and tumor progression.Biochim. Biophys. Acta Bioenerg.20171858863364010.1016/j.bbabio.2016.12.00828017650
    [Google Scholar]
  78. PanigrahiD.P. PraharajP.P. BholC.S. MahapatraK.K. PatraS. BeheraB.P. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics.Semin. Cancer Biol.201966455810.1016/j.semcancer.2019.07.01531351198
    [Google Scholar]
  79. YouleR.J. NarendraD.P. Mechanisms of mitophagy.Nat. Rev. Mol. Cell Biol.201112191410.1038/nrm302821179058
    [Google Scholar]
  80. BensingerS.J. ChristofkH.R. New aspects of the Warburg effect in cancer cell biology.Semin. Cell Dev. Biol.201223435236110.1016/j.semcdb.2012.02.00322406683
    [Google Scholar]
  81. ZhangC. LinM. WuR. WangX. YangB. LevineA.J. HuW. FengZ. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect.Proc. Natl. Acad. Sci.201110839162591626410.1073/pnas.111388410821930938
    [Google Scholar]
  82. WangY. LiuH.H. CaoY.T. ZhangL.L. HuangF. YiC. The role of mitochondrial dynamics and mitophagy in carcinogenesis, metastasis and therapy.Front. Cell Dev. Biol.2020841310.3389/fcell.2020.0041332587855
    [Google Scholar]
  83. SchneiderN. CerellaC. SimõesC.M.O. DiederichM. Anticancer and immunogenic properties of cardiac glycosides.Molecules20172211193210.3390/molecules2211193229117117
    [Google Scholar]
  84. CerellaC. DicatoM. DiederichM. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides.Mitochondrion201313322523410.1016/j.mito.2012.06.00322735572
    [Google Scholar]
  85. LiangM. TianJ. LiuL. PierreS. LiuJ. ShapiroJ. XieZ.J. Identification of a pool of non-pumping Na/K-ATPase.J. Biol. Chem.200728214105851059310.1074/jbc.M60918120017296611
    [Google Scholar]
  86. Cherniavsky-LevM. GolaniO. KarlishS.J.D. GartyH. Ouabain-induced internalization and lysosomal degradation of the Na+/K+-ATPase.J. Biol. Chem.201428921049105910.1074/jbc.M113.51700324275648
    [Google Scholar]
  87. PongrakhananonV. StueckleT.A. WangH.Y.L. O’DohertyG.A. DinuC.Z. ChanvorachoteP. RojanasakulY. Monosaccharide digitoxin derivative sensitize human non-small cell lung cancer cells to anoikis through Mcl-1 proteasomal degradation.Biochem. Pharmacol.2014881233510.1016/j.bcp.2013.10.02724231508
    [Google Scholar]
  88. CerellaC. MullerF. GaigneauxA. RadognaF. ViryE. ChateauvieuxS. DicatoM. DiederichM. Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450.Cell Death Dis.201566e178210.1038/cddis.2015.13426068790
    [Google Scholar]
  89. MengerL. VacchelliE. KeppO. EggermontA. TartourE. ZitvogelL. KroemerG. GalluzziL. Trial watch.OncoImmunology201322e2308210.4161/onci.2308223525565
    [Google Scholar]
  90. MekhailT. KaurH. GanapathiR. BuddG.T. ElsonP. BukowskiR.M. Phase 1 trial of Anvirzel™ in patients with refractory solid tumors.Invest. New Drugs200624542342710.1007/s10637‑006‑7772‑x16763787
    [Google Scholar]
  91. MoudiM. GoR. YienC.Y.S. NazreM. Vinca alkaloids.Int. J. Prev. Med.20134111231123524404355
    [Google Scholar]
  92. KumarA. Vincristine and vinblastine: A review.Int. J. Med. Pharm201662330
    [Google Scholar]
  93. JordanM. Mechanism of action of antitumor drugs that interact with microtubules and tubulin.Curr. Med. Chem. Anticancer Agents20122111710.2174/156801102335429012678749
    [Google Scholar]
  94. MorrisP.G. FornierM.N. Microtubule active agents: Beyond the taxane frontier.Clin. Cancer Res.200814227167717210.1158/1078‑0432.CCR‑08‑016919010832
    [Google Scholar]
  95. VermaA.K. SinghR.R. Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity.Indian J. Pharm. Sci.201072565565710.4103/0250‑474X.7854121695004
    [Google Scholar]
  96. JordanM.A. ThrowerD. WilsonL. ThrowerD. WilsonL. Mechanism of inhibition of cell proliferation by Vinca alkaloids.Cancer Res.1991518221222222009540
    [Google Scholar]
  97. XieS. ZhouJ. Harnessing plant biodiversity for the discovery of novel anticancer drugs targeting microtubules.Front. Plant Sci.2017872010.3389/fpls.2017.0072028523014
    [Google Scholar]
  98. SchutzF.A.B. BellmuntJ. RosenbergJ.E. ChoueiriT.K. Vinflunine: Drug safety evaluation of this novel synthetic vinca alkaloid.Expert Opin. Drug Saf.201110464565310.1517/14740338.2011.58166021524237
    [Google Scholar]
  99. Morales-CanoD. CalviñoE. RubioV. HerráezA. SanchoP. TejedorM.C. DiezJ.C. Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition.Exp. Toxicol. Pathol.2013657-81101110810.1016/j.etp.2013.04.00623735541
    [Google Scholar]
  100. Kingston DavidG.I. Taxol, an exciting anticancer drug from taxus brevifolia.Human Medicinal Agents from PlantsAmerican Chemical Society1993534138148
    [Google Scholar]
  101. KimS.H. KaplanJ.A. SunY. ShiehA. SunH.L. CroceC.M. GrinstaffM.W. ParquetteJ.R. The self-assembly of anticancer camptothecin-dipeptide nanotubes: a minimalistic and high drug loading approach to increased efficacy.Chemistry201521110110510.1002/chem.20140452025384556
    [Google Scholar]
  102. HsiangY.H. HertzbergR. HechtS. LiuL.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.J. Biol. Chem.198526027148731487810.1016/S0021‑9258(17)38654‑42997227
    [Google Scholar]
  103. OberliesN.H. KrollD.J. Camptothecin and taxol: Historic achievements in natural products research.J. Nat. Prod.200467212913510.1021/np030498t14987046
    [Google Scholar]
  104. TaraphdarA.K. RoyM. BhattacharyaR.K. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention.Curr. Sci.2001801113871396
    [Google Scholar]
  105. FuY. HsiehT. GuoJ. KunickiJ. LeeM.Y.W.T. DarzynkiewiczZ. WuJ.M. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells.Biochem. Biophys. Res. Commun.2004322126327010.1016/j.bbrc.2004.07.09415313200
    [Google Scholar]
  106. CheahY.H. NordinF.J. TeeT.T. AzimahtolH.L. AbdullahN.R. IsmailZ. Antiproliferative property and apoptotic effect of xanthorrhizol on MDA-MB-231 breast cancer cells.Anticancer Res.2008286A3677368919189649
    [Google Scholar]
  107. KimJ.M. KimJ.S. YooH. ChoungM.G. SungM.K. Effects of black soybean [Glycine max (L.) Merr.] seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo.J. Agric. Food Chem.200856188427843310.1021/jf801342p18710248
    [Google Scholar]
  108. CarrollR.E. BenyaR.V. TurgeonD.K. VareedS. NeumanM. RodriguezL. KakaralaM. CarpenterP.M. McLarenC. MeyskensF.L.Jr BrennerD.E. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia.Cancer Prev. Res.20114335436410.1158/1940‑6207.CAPR‑10‑009821372035
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429273223231124072223
Loading
/content/journals/cmp/10.2174/0118761429273223231124072223
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Apoptosis; Cardiac glycosides; CDK; JAK inhibitors; Mitophagy; Pyroptosis; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test