Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background:

Pancreatic fibrosis is a hallmark feature of chronic pancreatitis (CP), resulting in persistent damage to the pancreas. The sustained activation of pancreatic stellate cells (PSCs) plays a pivotal role in the progression of pancreatic fibrosis and is a major source of extracellular matrix (ECM) deposition during pancreatic injury.

Methods:

Calpain is a calcium-independent lysosomal neutral cysteine endopeptidase and was found to be correlated to various fibrotic diseases. Studies have revealed that calpeptin, a calpain inhibitor, can improve the fibrosis process of multiple organs. This study investigated the effect of the calpain inhibitor, calpeptin, on fibrosis in experimental CP and activation of cultured PSCs in mice. CP was induced in mice by repeated injections of cerulein for four weeks , and the activation process of mouse PSCs was isolated and cultured . Then, the inhibitory effect of calpeptin on pancreatic fibrosis was confirmed based on the histological damage of CP, the expression of α-smooth muscle actin (α-SMA) and collagen-Iα1(Col1α1), and the decrease in mRNA levels of calpain-1 and calpain-2.

Results:

In addition, it was revealed that calpeptin can inhibit the activation process of PSCs and induce significant PSCs apoptosis by downregulating the expression of calpain-1, calpain-2 and TGF-β1, and the expression and phosphorylation of smad3 .

Conclusion:

These results suggest that the calpain inhibitor, calpeptin, plays a key role in the regulation of PSC activation by inhibiting the TGF-β1/smad3 signaling pathway, which supports the potential of calpeptin as an inhibitor of pancreatic fibrosis in mice by interfering with calpain.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429241425231107044453
2024-01-01
2024-11-29
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429241425.html?itemId=/content/journals/cmp/10.2174/0118761429241425231107044453&mimeType=html&fmt=ahah

References

  1. ApteM.V. YangL. PhillipsP.A. XuZ. KaplanW. CowleyM. PirolaR.C. WilsonJ.S. Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: Role of transgelin in PSC function.Am. J. Physiol. Gastrointest. Liver Physiol.20133056G408G41710.1152/ajpgi.00016.201323868411
    [Google Scholar]
  2. MasamuneA. SuzukiN. KikutaK. ArigaH. HayashiS. TakikawaT. KumeK. HamadaS. HirotaM. KannoA. EgawaS. UnnoM. ShimosegawaT. Connexins regulate cell functions in pancreatic stellate cells.Pancreas201342230831610.1097/MPA.0b013e31825c51d622889984
    [Google Scholar]
  3. BynigeriR.R. JakkampudiA. JangalaR. SubramanyamC. SasikalaM. RaoG.V. ReddyD.N. TalukdarR. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology.World J. Gastroenterol.201723338240510.3748/wjg.v23.i3.38228210075
    [Google Scholar]
  4. OmaryM.B. LugeaA. LoweA.W. PandolS.J. The pancreatic stellate cell: A star on the rise in pancreatic diseases.J. Clin. Invest.20071171505910.1172/JCI3008217200706
    [Google Scholar]
  5. TabataC. TabataR. NakanoT. The calpain inhibitor calpeptin prevents bleomycin-induced pulmonary fibrosis in mice.Clin. Exp. Immunol.2010162356056710.1111/j.1365‑2249.2010.04257.x20846163
    [Google Scholar]
  6. LiuY. LiuB. ZhangG. ZouJ. ZouM. ChengZ. Calpain inhibition attenuates bleomycin-induced pulmonary fibrosis via switching the development of epithelial-mesenchymal transition.Naunyn Schmiedebergs Arch. Pharmacol.2018391769570410.1007/s00210‑018‑1499‑z29666896
    [Google Scholar]
  7. LiF.Z. CaiP.C. SongL.J. ZhouL.L. ZhangQ. RaoS.S. XiaY. XiangF. XinJ.B. GreerP.A. ShiH.Z. SuY. MaW.L. YeH. Crosstalk between calpain activation and TGF-β1 augments collagen-I synthesis in pulmonary fibrosis.Biochim. Biophys. Acta Mol. Basis Dis.2015185291796180410.1016/j.bbadis.2015.06.00826071646
    [Google Scholar]
  8. LetavernierE. PerezJ. BellocqA. MesnardL. de Castro KellerA. HaymannJ.P. BaudL. Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension.Circ. Res.2008102672072810.1161/CIRCRESAHA.107.16007718258859
    [Google Scholar]
  9. KovacsL. HanW. RafikovR. BagiZ. OffermannsS. SaidoT.C. BlackS.M. SuY. Activation of calpain-2 by mediators in pulmonary vascular remodeling of pulmonary arterial hypertension.Am. J. Respir. Cell Mol. Biol.201654338439310.1165/rcmb.2015‑0151OC26248159
    [Google Scholar]
  10. MaW. HanW. GreerP.A. TuderR.M. ToqueH.A. WangK.K.W. CaldwellR.W. SuY. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease.J. Clin. Invest.2011121114548456610.1172/JCI5773422005303
    [Google Scholar]
  11. MasamuneA. ShimosegawaT. Signal transduction in pancreatic stellate cells.J. Gastroenterol.200944424926010.1007/s00535‑009‑0013‑219271115
    [Google Scholar]
  12. RamakrishnanP. LohW.M. GopinathS.C.B. BonamS.R. FareezI.M. Mac GuadR. SimM.S. WuY.S. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer.Acta Pharm. Sin. B202010339941310.1016/j.apsb.2019.11.00832140388
    [Google Scholar]
  13. FerdekP.E. KrzysztofikD. StopaK.B. KusiakA.A. PawM. WnukD. JakubowskaM.A. When healing turns into killing – the pathophysiology of pancreatic and hepatic fibrosis.J. Physiol.2022600112579261210.1113/JP28113535430731
    [Google Scholar]
  14. ThomasD. RadhakrishnanP. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis.Mol. Cancer20191811410.1186/s12943‑018‑0927‑530665410
    [Google Scholar]
  15. SchnittertJ. BansalR. PrakashJ. Targeting pancreatic stellate cells in cancer.Trends Cancer20195212814210.1016/j.trecan.2019.01.00130755305
    [Google Scholar]
  16. VonlaufenA. ApteM.V. ImhofB.A. FrossardJ.L. The role of inflammatory and parenchymal cells in acute pancreatitis.J. Pathol.2007213323924810.1002/path.223117893879
    [Google Scholar]
  17. NagashioY. UenoH. ImamuraM. AsaumiH. WatanabeS. YamaguchiT. TaguchiM. TashiroM. OtsukiM. Inhibition of transforming growth factor β decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice.Lab. Invest.200484121610161810.1038/labinvest.370019115502860
    [Google Scholar]
  18. XiaoW. JiangW. ShenJ. YinG. FanY. WuD. QiuL. YuG. XingM. HuG. WangX. WanR. Retinoic acid ameliorates pancreatic fibrosis and inhibits the activation of pancreatic stellate cells in mice with experimental chronic pancreatitis via suppressing the wnt/β-catenin signaling pathway.PLoS One20151011e014146210.1371/journal.pone.014146226556479
    [Google Scholar]
  19. HuY. WanR. YuG. ShenJ. NiJ. YinG. XingM. ChenC. FanY. XiaoW. XuG. WangX. HuG. Imbalance of Wnt/Dkk negative feedback promotes persistent activation of pancreatic stellate cells in chronic pancreatitis.PLoS One201494e9514510.1371/journal.pone.009514524747916
    [Google Scholar]
  20. HuG. ShenJ. ChengL. GuoC. XuX. WangF. HuangL. YangL. HeM. XiangD. ZhuS. WuM. YuY. HanW. WangX. Reg4 protects against acinar cell necrosis in experimental pancreatitis.Gut201160682082810.1136/gut.2010.21517821193457
    [Google Scholar]
  21. ApteM.V. PirolaR.C. WilsonJ.S. Pancreatic stellate cells: A starring role in normal and diseased pancreas.Front. Physiol.2012334410.3389/fphys.2012.0034422973234
    [Google Scholar]
  22. JiangW. JinL. JuD. LuZ. WangC. GuoX. ZhaoH. ShenS. ChengZ. ShenJ. ZongG. ChenJ. LiK. YangL. ZhangZ. FengY. ShenJ.Z. ZhangE.E. WanR. The pancreatic clock is a key determinant of pancreatic fibrosis progression and exocrine dysfunction.Sci. Transl. Med.202214664eabn358610.1126/scitranslmed.abn358636170444
    [Google Scholar]
  23. YangX. ChenJ. WangJ. MaS. FengW. WuZ. GuoY. ZhouH. MiW. ChenW. YinB. LinY. Very-low-density lipoprotein receptor-enhanced lipid metabolism in pancreatic stellate cells promotes pancreatic fibrosis.Immunity202255711851199.e810.1016/j.immuni.2022.06.00135738281
    [Google Scholar]
  24. SwainS.M. RomacJ.M.J. VignaS.R. LiddleR.A. Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice.JCI Insight202278e15828810.1172/jci.insight.15828835451372
    [Google Scholar]
  25. ZhouL.L. ChengP.P. HeX.L. LiangL.M. WangM. LuY.Z. SongL.J. XiongL. XiangF. YuF. WangX. XinJ.B. GreerP.A. SuY. MaW.L. YeH. Pleural mesothelial cell migration into lung parenchyma by calpain contributes to idiopathic pulmonary fibrosis.J. Cell. Physiol.2022237156657910.1002/jcp.3050034231213
    [Google Scholar]
  26. HuangY. LiX. WangY. WangH. HuangC. LiJ. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways.Mol. Cell. Biochem.20143941-211210.1007/s11010‑014‑2073‑824961950
    [Google Scholar]
  27. NassarD. LetavernierE. BaudL. AractingiS. KhosrotehraniK. Calpain activity is essential in skin wound healing and contributes to scar formation.PLoS One201275e3708410.1371/journal.pone.003708422615899
    [Google Scholar]
  28. TabataC. TabataR. NakanoT. calpeptin prevents malignant pleural mesothelioma cell proliferation via the angiopoietin1/tie2 system.Asian Pac. J. Cancer Prev.20161773405340927509983
    [Google Scholar]
  29. YoshidaM. MiyasakaY. OhuchidaK. OkumuraT. ZhengB. TorataN. FujitaH. NabaeT. ManabeT. ShimamotoM. OhtsukaT. MizumotoK. NakamuraM. Calpain inhibitor calpeptin suppresses pancreatic cancer by disrupting cancer–stromal interactions in a mouse xenograft model.Cancer Sci.2016107101443145210.1111/cas.1302427487486
    [Google Scholar]
  30. SolomonT.E. YamadaT. ElashoffJ. WoodJ. BeglingerC. Bioactivity of cholecystokinin analogues: CCK-8 is not more potent than CCK-33.Am. J. Physiol. Gastrointest. Liver Physiol.19842471G105G11110.1152/ajpgi.1984.247.1.G1056204542
    [Google Scholar]
  31. UndyalaV.V. DemboM. CembrolaK. PerrinB.J. HuttenlocherA. ElceJ.S. GreerP.A. WangY. BeningoK.A. The calpain small subunit regulates cell-substrate mechanical interactions during fibroblast migration.J. Cell Sci.2008121213581358810.1242/jcs.03615218840650
    [Google Scholar]
  32. KimD.H. BeckettJ.D. NagpalV. Seman-SenderosM.A. GouldR.A. CreamerT.J. MacFarlaneE.G. ChenY. BedjaD. ButcherJ.T. MitznerW. RoufR. HataS. WarrenD.S. DietzH.C. Calpain 9 as a therapeutic target in TGFβ-induced mesenchymal transition and fibrosis.Sci. Transl. Med.201911501eaau281410.1126/scitranslmed.aau281431316008
    [Google Scholar]
  33. NanthakumarC.B. HatleyR.J.D. LemmaS. GauldieJ. MarshallR.P. MacdonaldS.J.F. Dissecting fibrosis: Therapeutic insights from the small-molecule toolbox.Nat. Rev. Drug Discov.2015141069372010.1038/nrd459226338155
    [Google Scholar]
  34. JiangL. ZhangJ. MonticoneR.E. TelljohannR. WuJ. WangM. LakattaE.G. Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis.Hypertension20126051192119910.1161/HYPERTENSIONAHA.112.19684023006733
    [Google Scholar]
  35. LiY. LiuC. LiB. HongS. MinJ. HuM. TangJ. WangT. YangL. HongL. Electrical stimulation activates calpain 2 and subsequently upregulates collagens via the integrin β1/TGF-β1 signaling pathway.Cell. Signal.20195914115110.1016/j.cellsig.2019.03.02330940604
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429241425231107044453
Loading
/content/journals/cmp/10.2174/0118761429241425231107044453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test