Full text loading...
-
Nuclear Imaging Modalities in the Diagnosis and Management of Thyroid Cancer
- Source: Current Molecular Medicine, Volume 24, Issue 9, Sep 2024, p. 1091 - 1096
-
- 01 Sep 2024
Abstract
In this review we have brought forward various nuclear imaging modalities used in the diagnosis, staging, and management of thyroid cancer. Thyroid cancer is the most common endocrine malignancy, accounting for approximately 3% of all new cancer diagnoses. Nuclear imaging plays an important role in the evaluation of thyroid cancer, and the use of radioiodine imaging, FDG imaging, and somatostatin receptor imaging are all valuable tools in the management of this disease. Radioiodine imaging involves the use of Iodine-123 [I-123] or Iodine-131 [I-131] to evaluate thyroid function and detect thyroid cancer. I-123 is a gamma-emitting isotope that is used in thyroid imaging to evaluate thyroid function and detect thyroid nodules. I-131 is a beta-emitting isotope that is used for the treatment of thyroid cancer. Radioiodine imaging is used to detect the presence of thyroid nodules and evaluate thyroid function. FDG imaging is a PET imaging modality that is used to evaluate the metabolic activity of thyroid cancer cells. FDG is a glucose analogue that is taken up by cells that are metabolically active, such as cancer cells. FDG PET/CT can detect primary thyroid cancer and metastatic disease, including lymph nodes and distant metastases. FDG PET/CT is also used to monitor treatment response and detect the recurrence of thyroid cancer. Somatostatin receptor imaging involves the use of radiolabeled somatostatin analogues to detect neuroendocrine tumors, including thyroid cancer. Radiolabeled somatostatin analogues, such as Indium-111 octreotide or Gallium-68 DOTATATE, are administered to the patient, and a gamma camera is used to detect areas of uptake. Somatostatin receptor imaging is highly sensitive and specific for the detection of metastatic thyroid cancer. A comprehensive search of relevant literature was done using online databases of PubMed, Embase, and Cochrane Library using the keywords "thyroid cancer," "nuclear imaging," "radioiodine imaging," "FDG PET/CT," and "somatostatin receptor imaging" to identify relevant studies to be included in this review. Nuclear imaging plays an important role in the diagnosis, staging, and management of thyroid cancer. The use of radioiodine imaging, thyroglobulin imaging, FDG imaging, and somatostatin receptor imaging are all valuable tools in the evaluation of thyroid cancer. With further research and development, nuclear imaging techniques have the potential to improve the diagnosis and management of thyroid cancer and other endocrine malignancies.