Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

The uncharacterized C19orf43 was discovered to be associated with hTR maturation. Our previous work indicated that C19orf43 cleaves distinct RNA types but not DNA. We then named it hTR-interacting RNase (hTRIR) (Uniprot: Q9BQ61). hTRIR works in a broad range of temperatures and pH without any divalent cations needed. hTRIR cleaves RNA at all four nucleotide sites but preferentially at purines. In addition, hTRIR digested both ends of methylated small RNA, which suggested that it was a putative ribonuclease. Later, we designed more nucleotides that methylated small RNA to determine whether it was an exo- and/or endoribonuclease. Unlike RNase A, hTRIR could digest both ends of methylated RNA oligos 5R5, which suggested it was potentially an endoribonuclease.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240260310231016112946
2024-01-01
2024-10-12
Loading full text...

Full text loading...

References

  1. XieJ. ChenZ. ZhangX. ChenH. GuanW. Identification of an RNase that preferentially cleaves A/G nucleotides.Sci. Rep.2017714520710.1038/srep45207 28322335
    [Google Scholar]
  2. PalmerT. BonnerP.L. The chemical nature of enzyme catalysis.In: Enzymes (Second Edition).201118922110.1533/9780857099921.2.189
    [Google Scholar]
  3. BurrellM.M. RNase A (EC 3.1.27.5).Methods Mol. Biol.19931626327010.1385/0‑89603‑234‑5:263 19082977
    [Google Scholar]
  4. MorrisonH. Enzyme Active Sites and their Reaction Mechanisms.2021193197
    [Google Scholar]
  5. KövérK.E. BruixM. SantoroJ. BattaG. LaurentsD.V. RicoM. The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition.J. Mol. Biol.2008379595396510.1016/j.jmb.2008.04.042 18495155
    [Google Scholar]
  6. LandréJ.B.P. HewettP.W. OlivotJ.M. Human endothelial cells selectively express large amounts of pancreatic-type ribonuclease (RNase 1).J. Cell. Biochem.200286354055210.1002/jcb.10234 12210760
    [Google Scholar]
  7. MizutaK. YasudaT. IkeharaY. SatoW. KishiK. New detection method for ribonuclease 2 (RNase 2) using immunoblotting with specific antibody.Z. Rechtsmed.1990103531532210.1007/BF01263035 2356660
    [Google Scholar]
  8. IyerS. HollowayD.E. KumarK. ShapiroR. Ravi AcharyaK. Molecular recognition of human eosinophil-derived neurotoxin (RNase 2) by placental ribonuclease inhibitor.J. Mol. Biol.2005347363765510.1016/j.jmb.2005.01.035 15755456
    [Google Scholar]
  9. DomachowskeJ.B. BonvilleC.A. DyerK.D. RosenbergH.F. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus.Nucleic Acids Res.199826235327533210.1093/nar/26.23.5327 9826755
    [Google Scholar]
  10. DomachowskeJ.B. DyerK.D. BonvilleC.A. RosenbergH.F. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus.J. Infect. Dis.199817761458146410.1086/515322 9607820
    [Google Scholar]
  11. DomachowskeJ.B. DyerK.D. AdamsA.G. LetoT.L. RosenbergH.F. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity.Nucleic Acids Res.199826143358336310.1093/nar/26.14.3358 9649619
    [Google Scholar]
  12. MaedaT. MaharaK. KitazoeM. RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases.J. Biochem.2002132573774210.1093/oxfordjournals.jbchem.a003281 12417023
    [Google Scholar]
  13. SandínD. ValleJ. Chaves-ArqueroB. Rationally modified antimicrobial peptides from the N-terminal domain of human RNase 3 show exceptional serum stability.J. Med. Chem.20216415114721148210.1021/acs.jmedchem.1c00795 34342438
    [Google Scholar]
  14. AbengózarM.Á. Fernández-ReyesM. SalazarV.A. Essential role of enzymatic activity in the leishmanicidal mechanism of the eosinophil cationic protein (RNase 3).ACS Infect. Dis.2022871207121710.1021/acsinfecdis.1c00537 35731709
    [Google Scholar]
  15. LiangS. AcharyaK.R. Structural basis of substrate specificity in porcine RNase 4.FEBS J.2016283591292810.1111/febs.13646 26748441
    [Google Scholar]
  16. RosenbergH.F. DyerK.D. Human ribonuclease 4 (RNase 4): Coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues.Nucleic Acids Res.199523214290429510.1093/nar/23.21.4290 7501448
    [Google Scholar]
  17. DyerK.D. RosenbergH.F. The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression.Nucleic Acids Res.20053331077108610.1093/nar/gki250 15722482
    [Google Scholar]
  18. AbtinA. EckhartL. MildnerM. Degradation by stratum corneum proteases prevents endogenous RNase inhibitor from blocking antimicrobial activities of RNase 5 and RNase 7.J. Invest. Dermatol.200912992193220110.1038/jid.2009.35 19262607
    [Google Scholar]
  19. Prats-EjarqueG. Arranz-TrullénJ. BlancoJ.A. The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement.Biochem. J.2016473111523153610.1042/BCJ20160245 27013146
    [Google Scholar]
  20. NarayananC. BernardD.N. LétourneauM. Insights into structural and dynamical changes experienced by human RNase 6 upon ligand binding.Biochemistry202059675576510.1021/acs.biochem.9b00888 31909602
    [Google Scholar]
  21. ZhangJ. DyerK.D. RosenbergH.F. Human RNase 7: a new cationic ribonuclease of the RNase A superfamily.Nucleic Acids Res.200331260260710.1093/nar/gkg157 12527768
    [Google Scholar]
  22. HarderJ. SchröderJ.M. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin.J. Biol. Chem.200227748467794678410.1074/jbc.M207587200 12244054
    [Google Scholar]
  23. RudolphB. PodschunR. SahlyH. SchubertS. SchröderJ.M. HarderJ. Identification of RNase 8 as a novel human antimicrobial protein.Antimicrob. Agents Chemother.20065093194319610.1128/AAC.00246‑06 16940129
    [Google Scholar]
  24. ZhangJ. DyerK.D. RosenbergH.F. RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta.Nucleic Acids Res.20023051169117510.1093/nar/30.5.1169 11861908
    [Google Scholar]
  25. DevorE.J. Moffat-WilsonK.A. GalbraithJ.J. LOC 390443 (RNase 9) on chromosome 14q11.2 is related to the RNase A superfamily and contains a unique amino-terminal preproteinlike sequence.Hum. Biol.200476692193510.1353/hub.2005.0016 15974301
    [Google Scholar]
  26. ChengG.Z. LiJ.Y. LiF. WangH.Y. ShiG.X. Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein.Asian J. Androl.200911224025110.1038/aja.2008.30 19137000
    [Google Scholar]
  27. KrutskikhA. PoliandriA. Cabrera-SharpV. DacheuxJ.L. PoutanenM. HuhtaniemiI. Epididymal protein Rnase10 is required for post‐testicular sperm maturation and male fertility.FASEB J.201226104198420910.1096/fj.12‑205211 22750516
    [Google Scholar]
  28. KrutskikhA. De GendtK. SharpV. VerhoevenG. PoutanenM. HuhtaniemiI. Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia.Endocrinology2011152268969610.1210/en.2010‑0768 21084446
    [Google Scholar]
  29. HuangY. LiX. SunX. Anatomical transcriptome atlas of the male mouse reproductive system during aging.Front. Cell Dev. Biol.2022978282410.3389/fcell.2021.782824 35211476
    [Google Scholar]
  30. YoshidaH. The ribonuclease T1 family.Methods Enzymol.2001341284110.1016/S0076‑6879(01)41143‑8 11582784
    [Google Scholar]
  31. NilsenTW RNA structure determination using nuclease digestion.Cold Spring Harb Protoc201320134pdb.prot07233010.1101/pdb.prot072330 23547152
    [Google Scholar]
  32. LeeH. ChoH. KimJ. RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids.Nucleic Acids Res.20225041801181410.1093/nar/gkab1064 34788459
    [Google Scholar]
  33. SongJ. MarkleyJ.L. Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold.J. Mol. Biol.2007366115516410.1016/j.jmb.2006.11.024 17166513
    [Google Scholar]
  34. PaushkinS.V. PatelM. FuriaB.S. PeltzS.W. TrottaC.R. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation.Cell2004117331132110.1016/S0092‑8674(04)00342‑3 15109492
    [Google Scholar]
  35. SonA. ParkJ.E. KimV.N. PARN and TOE1 constitute a 3′ end maturation module for nuclear non-coding RNAs.Cell Rep.201823388889810.1016/j.celrep.2018.03.089 29669292
    [Google Scholar]
  36. DengT. HuangY. WengK. TOE1 acts as a 3′ exonuclease for telomerase RNA and regulates telomere maintenance.Nucleic Acids Res.201947139140510.1093/nar/gky1019 30371886
    [Google Scholar]
  37. LardelliR.M. SchafferA.E. EggensV.R.C. Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing.Nat. Genet.201749345746410.1038/ng.3762 28092684
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240260310231016112946
Loading
/content/journals/cmm/10.2174/0115665240260310231016112946
Loading

Data & Media loading...

  • Article Type: Editorial
Keyword(s): Endoribonuclease; hTRIR; methylated RNA; ribonuclease; RNA digestion; RNase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test