Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Chronic kidney disease has become one of the world's major public health problems, immunoglobulin A (IgA) nephropathy is a common pathological type of CKD. Delaying the progression of IgA nephropathy has currently become the main clinical treatment strategy, precise evaluation of renal pathological injury during follow-up of patients with IgA nephropathy is important. Therefore, it is imperative to develop an accurate and non-invasive imaging technique for effective follow-up of renal pathological injury in patients with IgA nephropathy.

Objective

To investigate the clinical value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in assessing renal pathological injury in patients with immunoglobulin A (IgA) nephropathy compared with a mono-exponential model.

Methods

Altogether, 80 patients with IgA nephropathy were divided into the mild (41 cases) andmoderate–severe (m–s) renal injury groups (39 cases) according to pathology scores, and 20 healthy volunteers were recruited as controls. All participants underwent IVIM-DWI of the kidneys, and renal parenchymal apparent diffusion coefficient (ADC), pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) values were measured. One-way analysis of variance, receiver operating characteristic (ROC) curve analysis, and Pearson correlation analysis were performed for all the DWI-derived parameters.

Results

The DWI-derived parameters of the m–s renal injury group were significantly lower than those of the mild renal injury and control groups (P < 0.01). The ROC analysis revealed that f had the largest area under the ROC curve for differentiation between the m–s and mild renal injury groups and between the m–s renal injury and control groups. The f had the largest correlation coefficient with renal pathology scores (r=−0.81), followed by the D* (−0.69), ADC (−0.54), and D values (−0.53), respectively (all P<0.01).

Conclusion

IVIM-DWI demonstrated better diagnostic performance than the mono-exponential model in assessing renal pathological injury in patients with IgA nephropathy.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230627103919
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e270623218301.html?itemId=/content/journals/cmir/10.2174/1573405620666230627103919&mimeType=html&fmt=ahah

References

  1. GuptaT. PaulN. KolteD. HarikrishnanP. KheraS. AronowW.S. MujibM. PalaniswamyC. SuleS. JainD. AhmedA. CooperH.A. FrishmanW.H. BhattD.L. FonarowG.C. PanzaJ.A. Association of chronic renal insufficiency with in-hospital outcomes after percutaneous coronary intervention.J. Am. Heart Assoc.201546e00206910.1161/JAHA.115.00206926080814
    [Google Scholar]
  2. OnuigboM.A.C. AgbasiN. Chronic kidney disease prediction is an inexact science: The concept of “progressors” and “nonprogressors”.World J. Nephrol.201433314910.5527/wjn.v3.i3.3125332895
    [Google Scholar]
  3. D’AmicoG. Influence of clinical and histological features on actuarial renal survival in adult patients with idiopathic IgA nephropathy, membranous nephropathy, and membranoproliferative glomerulonephritis: survey of the recent literature.Am. J. Kidney Dis.199220431532310.1016/S0272‑6386(12)70293‑71415198
    [Google Scholar]
  4. JohnstonP.A. BrownJ.S. BraumholtzD.A. DavisonA.M. Clinico-pathological correlations and long-term follow-up of 253 United Kingdom patients with IgA nephropathy. A report from the MRC Glomerulonephritis Registry.Q. J. Med.1992843046196271484940
    [Google Scholar]
  5. LiP.K.T. HoK.K.L. SzetoC.C. YuL. LaiF.M.M. Prognostic indicators of IgA nephropathy in the Chinese—clinical and pathological perspectives.Nephrol. Dial. Transplant.2002171646910.1093/ndt/17.1.6411773464
    [Google Scholar]
  6. CagnoliL. Instructions and implementations for percutaneous renal biopsy. Guidelines for the therapy of glomerular nephropaties.G. Ital. Nefrol.200320Suppl. 24S3S4714666502
    [Google Scholar]
  7. JiangS.H.T. KarpeK.M. TalaulikarG.S. Safety and predictors of complications of renal biopsy in the outpatient setting.Clin. Nephrol.2011761246446910.5414/CN10712822105449
    [Google Scholar]
  8. ParrishA.E. Complications of percutaneous renal biopsy: A review of 37 years’ experience.Clin. Nephrol.19923831351411395165
    [Google Scholar]
  9. LiQ. WangD. ZhuX. ShenK. XuF. ChenY. Combination of renal apparent diffusion coefficient and renal parenchymal volume for better assessment of split renal function in chronic kidney disease.Eur. J. Radiol.201810819420010.1016/j.ejrad.2018.10.00230396655
    [Google Scholar]
  10. XuX. PalmerS.L. LinX. LiW. ChenK. YanF. LiX. Diffusion-weighted imaging and pathology of chronic kidney disease: initial study.Abdom. Radiol.20184371749175510.1007/s00261‑017‑1362‑629110054
    [Google Scholar]
  11. PozzessereC. Castaños GutiérrezS.L. Corona-VillalobosC.P. RighiL. XuC. LennonA.M. WolfgangC.L. HrubanR.H. GogginsM. CantoM.I. KamelI.R. Diffusion-weighted magnetic resonance imaging in distinguishing between mucin-producing and serous pancreatic cysts.J. Comput. Assist. Tomogr.201640450551210.1097/RCT.000000000000040327023856
    [Google Scholar]
  12. KakiteS. DyvorneH.A. LeeK.M. JajamovichG.H. Knight-GreenfieldA. TaouliB. Hepatocellular carcinoma: IVIM diffusion quantification for prediction of tumor necrosis compared to enhancement ratios.Eur. J. Radiol. Open201631710.1016/j.ejro.2015.11.00227069971
    [Google Scholar]
  13. ShiroishiM.S. BoxermanJ.L. PopeW.B. Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma.Neuro-oncol.201618446747810.1093/neuonc/nov17926364321
    [Google Scholar]
  14. LiQ. LiJ. ZhangL. ChenY. ZhangM. YanF. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study.Eur. J. Radiol.201483575676210.1016/j.ejrad.2014.01.02424581595
    [Google Scholar]
  15. Le BihanD. BretonE. LallemandD. AubinM.L. VignaudJ. Laval-JeantetM. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.Radiology1988168249750510.1148/radiology.168.2.33936713393671
    [Google Scholar]
  16. ZhangQ. YuZ. ZengS. LiangL. XuY. ZhangZ. TangH. JiaoW. XueW. WangW. ZhangX. JiangT. HuX. Use of intravoxel incoherent motion imaging to monitor a rat kidney chronic allograft damage model.BMC Nephrol.201920136410.1186/s12882‑019‑1545‑131601196
    [Google Scholar]
  17. HuG. YangZ. LiangW. LaiC. MeiY. LiY. XuJ. LuoL. QuanX. Intravoxel incoherent motion and arterial spin labeling MRI analysis of reversible unilateral ureteral obstruction in rats.J. Magn. Reson. Imaging201950128829610.1002/jmri.2653630328247
    [Google Scholar]
  18. WooS. ChoJ.Y. KimS.Y. KimS.H. Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: An experimental study in a rabbit model of unilateral ureter obstruction.Magn. Reson. Imaging20185110411210.1016/j.mri.2018.04.01829738802
    [Google Scholar]
  19. CaiX.R. YuJ. ZhouQ.C. DuB. FengY.Z. LiuX. Use of intravoxel incoherent motion MRI to assess renal fibrosis in a rat model of unilateral ureteral obstruction.J. Magn. Reson. Imaging201644369870610.1002/jmri.2517226841951
    [Google Scholar]
  20. DingY. TanQ. MaoW. DaiC. HuX. HouJ. ZengM. ZhouJ. Differentiating between malignant and benign renal tumors: Do IVIM and diffusion kurtosis imaging perform better than DWI?Eur. Radiol.201929126930693910.1007/s00330‑019‑06240‑631161315
    [Google Scholar]
  21. JinY.N. ZhangY. ChengJ.L. ZhengD.D. HuY. Monoexponential, Biexponential, and stretched‐exponential models using diffusion‐weighted imaging: A quantitative differentiation of breast lesions at 3.0T.J. Magn. Reson. Imaging20195051461146710.1002/jmri.2672930919518
    [Google Scholar]
  22. ZhangH. WangP. ShiD. YaoX. LiY. LiuX. SunY. DingJ. WangS. WangG. RenK. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes.Eur. Radiol.20223252988299710.1007/s00330‑021‑08415‑635031840
    [Google Scholar]
  23. FengY.Z. ChenX.Q. YuJ. LiuX.L. ChengZ.Y. RenW.W. FengL. CaiX.R. Intravoxel incoherent motion (IVIM) at 3.0 T: Evaluation of early renal function changes in type 2 diabetic patients.Abdom. Radiol. (N.Y.)201843102764277310.1007/s00261‑018‑1555‑729525883
    [Google Scholar]
  24. DingJ. ChenJ. JiangZ. ZhouH. DiJ. XingW. Assessment of renal dysfunction with diffusion-weighted imaging: Comparing intra-voxel incoherent motion (IVIM) with a mono-exponential model.Acta Radiol.201657450751210.1177/028418511559565826189976
    [Google Scholar]
  25. ChengZ.Y. FengY.Z. HuJ.J. LinQ.T. LiW. QianL. CaiX.R. Intravoxel incoherent motion imaging of the kidney: The application in patients with hyperuricemia.J. Magn. Reson. Imaging202051383384010.1002/jmri.2686131318112
    [Google Scholar]
  26. LucianiA. VignaudA. CavetM. Tran Van NhieuJ. MallatA. RuelL. LaurentA. DeuxJ.F. BrugieresP. RahmouniA. Liver cirrhosis: Intravoxel incoherent motion MR imaging-pilot study.Radiology2008249389189910.1148/radiol.249308008019011186
    [Google Scholar]
  27. KatafuchiR. KiyoshiY. OhY. UesugiN. IkedaK. YanaseT. FujimiS. Glomerular score as a prognosticator in IgA nephropathy: Its usefulness and limitation.Clin. Nephrol.1998491189491278
    [Google Scholar]
  28. DeLongE.R. DeLongD.M. Clarke-PearsonD.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach.Biometrics198844383784510.2307/25315953203132
    [Google Scholar]
  29. LandisJ.R. KochG.G. The measurement of observer agreement for categorical data.Biometrics197733115917410.2307/2529310843571
    [Google Scholar]
  30. XuX. FangW. LingH. ChaiW. ChenK. Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study.Eur. Radiol.201020497898310.1007/s00330‑009‑1619‑819789876
    [Google Scholar]
  31. HaqueM.E. FranklinT. BokharyU. MathewL. HackB.K. ChangA. PuriT.S. PrasadP.V. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: Preliminary experience.J. Magn. Reson. Imaging201439483584110.1002/jmri.2423524151096
    [Google Scholar]
  32. JiangJ. FuY. HuX. CuiL. HongQ. GuX. YinJ. CaiR. XuG. The value of diffusion-weighted imaging based on monoexponential and biexponential models for the diagnosis of benign and malignant lung nodules and masses.Br. J. Radiol.20209311102019040010.1259/bjr.2019040032163295
    [Google Scholar]
  33. ZhuS.C. LiuY.H. WeiY. LiL.L. DouS.W. SunT.Y. ShiD.P. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: Comparison with conventional diffusion-weighted imaging.World J. Gastroenterol.201824892994010.3748/wjg.v24.i8.92929491686
    [Google Scholar]
  34. LimH.K. JeeW.H. JungJ.Y. PaekM.Y. KimI. JungC.K. ChungY.G. Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3 T.Br. J. Radiol.20179110822017063610.1259/bjr.2017063629144153
    [Google Scholar]
  35. WanQ. DengY. LeiQ. BaoY. WangY. ZhouJ. ZouQ. LiX. Differentiating between malignant and benign solid solitary pulmonary lesions: Are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging?Eur. Radiol.20192931607161510.1007/s00330‑018‑5714‑630255258
    [Google Scholar]
  36. ZhangJ.L. SigmundE.E. ChandaranaH. RusinekH. ChenQ. VivierP.H. TaouliB. LeeV.S. Variability of renal apparent diffusion coefficients: Limitations of the monoexponential model for diffusion quantification.Radiology2010254378379210.1148/radiol.0909089120089719
    [Google Scholar]
  37. HashimE. YuenD.A. KirpalaniA. Reduced flow in delayed graft function as assessed by IVIM is associated with time to recovery following kidney transplantation.J. Magn. Reson. Imaging202153110811710.1002/jmri.2724532602206
    [Google Scholar]
  38. ChenL. RenT. ZuoP. FuY. XiaS. ShenW. Detecting impaired function of renal allografts at the early stage after transplantation using intravoxel incoherent motion imaging.Acta Radiol.20196081039104710.1177/028418511881097930450922
    [Google Scholar]
  39. ZengS. LiangL. ZhangQ. XuY. TangH. ZhangZ. ZhangX. JiangT. HuX. Using functional magnetic resonance imaging to evaluate an acute allograft rejection model in rats.Magn. Reson. Imaging201958243110.1016/j.mri.2019.01.00630630071
    [Google Scholar]
  40. HenkelmanR.M. NeilJ.J. XiangQ.S. A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain.Magn. Reson. Med.199432446446910.1002/mrm.19103204077997111
    [Google Scholar]
  41. HenkelmanR.M. Does IVIM measure classical perfusion?Magn. Reson. Med.199016347047510.1002/mrm.19101603132077337
    [Google Scholar]
  42. LiuZ. XuY. ZhangJ. ZhenJ. WangR. CaiS. YuanX. LiuQ. Chronic kidney disease: Pathological and functional assessment with diffusion tensor imaging at 3T MR.Eur. Radiol.201525365266010.1007/s00330‑014‑3461‑x25304821
    [Google Scholar]
  43. WuH.H. JiaH.R. ZhangY. LiuL. XuD.B. SunH.R. Monitoring the progression of renal fibrosis by T2-weighted signal intensity and diffusion weighted magnetic resonance imaging in cisplatin induced rat models.Chin. Med. J.2015128562663110.4103/0366‑6999.15166025698194
    [Google Scholar]
  44. HennedigeT. KohT.S. HartonoS. YanY.Y. SongI.C. ZhengL. LeeW.S. RumpelH. MartarelloL. KhooJ.B. KohD.M. ChuangK.H. ThngC.H. Intravoxel incoherent imaging of renal fibrosis induced in a murine model of unilateral ureteral obstruction.Magn. Reson. Imaging201533101324132810.1016/j.mri.2015.07.01226248270
    [Google Scholar]
  45. ChoiJ.S. KimM.J. ChungY.E. KimK.A. ChoiJ.Y. LimJ.S. ParkM.S. KimK.W. Comparison of breathhold, navigator-triggered, and free-breathing diffusion-weighted MRI for focal hepatic lesions.J. Magn. Reson. Imaging201338110911810.1002/jmri.2394923188562
    [Google Scholar]
  46. HerekD. KarabulutN. KocyıgıtA. YagcıA.B. Evaluation of free breathing versus breath hold diffusion weighted imaging in terms Apparent Diffusion Coefficient (ADC) and Signal-to-Noise Ratio (SNR) values for solid abdominal organs.Pol. Przegl. Radiol. Med. Nukl.20168150250610.12659/PJR.89586827822326
    [Google Scholar]
  47. TakayamaY. NishieA. AsayamaY. IshigamiK. KakiharaD. UshijimaY. FujitaN. ShirabeK. TakemuraA. HondaH. Image quality and diagnostic performance of free-breathing diffusion-weighted imaging for hepatocellular carcinoma.World J. Hepatol.201791465766610.4254/wjh.v9.i14.65728588750
    [Google Scholar]
  48. SwerkerssonS. GrundbergO. KölbeckK. CarlbergA. NyrénS. SkorpilM. Optimizing diffusion-weighted magnetic resonance imaging for evaluation of lung tumors: A comparison of respiratory triggered and free breathing techniques.Eur. J. Radiol. Open2018518919310.1016/j.ejro.2018.10.00330450371
    [Google Scholar]
  49. MorinC.E. DillmanJ.R. SeraiS.D. TroutA.T. TkachJ.A. WangH. Comparison of standard breath-held, free-breathing, and compressed sensing 2D gradient-recalled echo mr elastography techniques for evaluating liver stiffness.AJR Am. J. Roentgenol.20182116W279W28710.2214/AJR.18.1976130300003
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230627103919
Loading
/content/journals/cmir/10.2174/1573405620666230627103919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test