Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Sulfur and nitrogen-containing heterocycles have received a great deal of attention due to their unique structures and therapeutic relevance. Thiazoles and thiadiazoles are important five-membered heterocycles containing sulfur and nitrogen atoms that draw the special attention of researchers due to their synthetic diversity and potent pharmacological properties. Thiazoles and thiadiazoles are used in agrochemicals, liquid crystals, sensors, the cosmetic industry, cyanine dyes, . Sometimes, organic synthesis, including thiazoles and thiadiazoles syntheses with the help of conventional methods, is laborious work, while synthesis of promising organic molecules using microwave irradiation provides better yields, diminishes the reaction time, and reduces unwanted side products. The major causes of death worldwide are due to cancer. Current research demands the design and preparation of novel compounds, including thiazoles and thiadiazoles, that may help to combat cancer, as chemotherapy or chemo drugs suffer from some demerits, including toxicity, lack of selectivity, resistance, and side effects. Hence, the review focuses on the microwave-assisted synthesis of thiazoles and thiadiazoles as a sustainable technique for the first time, and it also aims to highlight the anticancer activities of thiazoles and thiadiazole derivatives elegantly.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356325646240715074628
2024-09-01
2024-11-26
Loading full text...

Full text loading...

References

  1. GawandeM.B. ShelkeS.N. ZborilR. VarmaR.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics.Acc. Chem. Res.20144741338134810.1021/ar400309b 24666323
    [Google Scholar]
  2. AnastasP. WarnerJ.C. Eds.; Green Chemistry: Theory and Practice.OxfordOxford University Press1998
    [Google Scholar]
  3. BazureauJ.P. PaquinL. CarriéD. L’Helgoual’chJ.M. GuihéneufS. CoulibalyK.W. BurgyG. KomatyS. LimantonE. Microwaves in heterocyclic chemistry.Microwaves in Organic Synthesis.Weinheim, GermanyWiley‐VCH Verlag GmbH & Co.201210.1002/9783527651313.ch16
    [Google Scholar]
  4. MajhiS. The art of total synthesis of bioactive natural products via microwaves.Curr. Org. Chem.20212591047106910.2174/1385272825666210303112302
    [Google Scholar]
  5. GedyeR. SmithF. WestawayK. AliH. BaldiseraL. LabergeL. RousellJ. The use of microwave ovens for rapid organic synthesis.Tetrahedron Lett.198627327928210.1016/S0040‑4039(00)83996‑9
    [Google Scholar]
  6. KappeC.O. Controlled microwave heating in modern organic synthesis.Angew. Chem. Int. Ed.200443466250628410.1002/anie.200400655 15558676
    [Google Scholar]
  7. MajhiS. MondalP.K. Microwave-assisted synthesis of heterocycles and their anti-cancer activities.Curr. Microw. Chem.202310213515410.2174/0122133356264446230925173123
    [Google Scholar]
  8. HaydenS. DammM. KappeC.O. On the importance of accurate internal temperature measurements in the microwave dielectric heating of viscous systems and polymer synthesis.Macromol. Chem. Phys.2013214442343410.1002/macp.201200449
    [Google Scholar]
  9. VanierG.S. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM).Methods Mol. Biol.2013104723524910.1007/978‑1‑62703‑544‑6_17 23943491
    [Google Scholar]
  10. OnwudiweD.C. Microwave-assisted synthesis of PbS nanostructures.Heliyon201953e0141310.1016/j.heliyon.2019.e01413 30976689
    [Google Scholar]
  11. MajhiS. JashS.K. Recent developments of nanocatalysts for Stille coupling reaction.Synth. Commun.2023532061208710.1080/00397911.2023.2269585
    [Google Scholar]
  12. MajhiS. Applications of nanoparticles in organic synthesis under ultrasonication. Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability.AmsterdamElsevier2023
    [Google Scholar]
  13. DasD. MajhiS. Nanoparticles in multicomponent reactions toward green organic synthesis. Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability.AmsterdamElsevier2023
    [Google Scholar]
  14. SalogaP.E.J. KästnerC. ThünemannA.F. High-speed but not magic: Microwave-assisted synthesis of ultra-small silver nanoparticles.Langmuir201834114715310.1021/acs.langmuir.7b01541 29215896
    [Google Scholar]
  15. AdhikariA. BhaktaS. GhoshT. Microwave-assisted synthesis of bioactive heterocycles: An overview.Tetrahedron202212613308510.1016/j.tet.2022.133085
    [Google Scholar]
  16. LewA. KrutzikP.O. HartM.E. ChamberlinA.R. Increasing rates of reaction: Microwave-assisted organic synthesis for combinatorial chemistry.J. Comb. Chem.2002429510510.1021/cc010048o 11886281
    [Google Scholar]
  17. SunJ. WangW. YueQ. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies.Materials (Basel)20169423110.3390/ma9040231 28773355
    [Google Scholar]
  18. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results Chem.20224100606
    [Google Scholar]
  19. MajhiS. SahaI. Visible light-promoted synthesis of bioactive N, N-heterocycles.Curr. Green Chem.20229312714410.2174/2213346110666221223141323
    [Google Scholar]
  20. MajhiS. Visible light-promoted synthesis of bioactive N, N-heterocycles.Phys. Sci. Rev.202289021610.1515/psr‑2021‑0216
    [Google Scholar]
  21. BrahmachariG. MandalL.C. RoyR. JashS.K. MondalA. MajhiS. GoraiD. Lupeol, a pharmaceutically potent triterpenoid, from the ripe fruits of Rauvolfia tetraphylla L. (Apocynaceae).J. Indian Chem. Soc.201188303305
    [Google Scholar]
  22. MajhiS. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review.Anticancer. Agents Med. Chem.202222193219323810.2174/1871520621666211015142310 34779372
    [Google Scholar]
  23. ObaidR.J. NaeemN. MughalE.U. Al-RooqiM.M. SadiqA. JassasR.S. MoussaZ. AhmedS.A. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase.RSC Advances20221231197641985510.1039/D2RA03081K 35919585
    [Google Scholar]
  24. AkhtarJ. KhanA.A. AliZ. HaiderR. Shahar YarM. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.Eur. J. Med. Chem.201712514318910.1016/j.ejmech.2016.09.023 27662031
    [Google Scholar]
  25. ChhabriaM.T. PatelS. ModiP. BrahmkshatriyaP.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives.Curr. Top. Med. Chem.201616262841286210.2174/1568026616666160506130731 27150376
    [Google Scholar]
  26. HelalM.H.M. SalemM.A. El-GabyM.S.A. AljahdaliM. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents.Eur. J. Med. Chem.20136551752610.1016/j.ejmech.2013.04.005 23787438
    [Google Scholar]
  27. FrijaL.M.T. PombeiroA.J.L. KopylovichM.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles.Coord. Chem. Rev.2016308325510.1016/j.ccr.2015.10.003
    [Google Scholar]
  28. MishraR. SharmaP.K. VermaP.K. TomerI. MathurG. DhakadP.K. Biological potential of thiazole derivatives of synthetic origin.J. Heterocycl. Chem.20175442103211610.1002/jhet.2827
    [Google Scholar]
  29. NarasimhamurthyK.H. SajithA.M. JoyM.N. RangappaK.S. An overview of recent developments in the synthesis of substituted thiazoles.ChemistrySelect20205195629565610.1002/slct.202001133
    [Google Scholar]
  30. TahghighiA. BabaloueiF. Thiadiazoles: The appropriate pharmacological scaffolds with leishmanicidal and antimalarial activities: A review.Iran. J. Basic Med. Sci.2017206613622 28868117
    [Google Scholar]
  31. JainA.K. SharmaS. VaidyaA. RavichandranV. AgrawalR.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities.Chem. Biol. Drug Des.201381555757610.1111/cbdd.12125 23452185
    [Google Scholar]
  32. ZaraeiS.O. SbenatiR.M. AlachN.N. AnbarH.S. El-GamalR. TaraziH. ShehataM.K. Abdel-MaksoudM.S. OhC.H. El-GamalM.I. Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors.Eur. J. Med. Chem.202122411367410.1016/j.ejmech.2021.113674 34237622
    [Google Scholar]
  33. PetchiappanA. ChatterjiD. Antibiotic resistance: Current perspectives.ACS Omega20172107400740910.1021/acsomega.7b01368 30023551
    [Google Scholar]
  34. MajhiS. SivakumarM. Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2023
    [Google Scholar]
  35. MajhiS. MandalB. Modern Sustainable Techniques in Total Synthesis of Bioactive Natural Products.SingaporeWorld Scientific202310.1142/13210
    [Google Scholar]
  36. MajhiS. GoraiD. JashS.K. SinghR.K. SarkarA. Chemical and pharmacological aspects of Limnophila rugosa: An update.Int. J. Nat. Prod. Res.20133120124
    [Google Scholar]
  37. DeyA.K. MajhiS. Samarium(III) triflate in organic synthesis: A mild and efficient catalyst.ChemistrySelect2023818e20230015610.1002/slct.202300156
    [Google Scholar]
  38. MajhiS. Applications of flow chemistry in total synthesis of natural products.Curr. Org. Chem.202327121072108910.2174/1385272827666230809094232
    [Google Scholar]
  39. GaggeroN. PandiniS. Advances in chemoselective intermolecular cross-benzoin-type condensation reactions.Org. Biomol. Chem.201715336867688710.1039/C7OB01662J 28809427
    [Google Scholar]
  40. BatranR.Z. AhmedE.Y. AwadH.M. AliK.A. Abdel LatifN.A. EGFR and PI3K/m-TOR inhibitors: Design, microwave assisted synthesis and anticancer activity of thiazole–coumarin hybrids.RSC Advances20231342290702908510.1039/D3RA03483F 37800132
    [Google Scholar]
  41. FábiánB. KudarV. CsámpaiA. NagyT.Z. SohárP. Synthesis, IR-, NMR-, DFT and X-ray study of ferrocenyl heterocycles from thiosemicarbazones. Part 21: Study on ferrocenes.J. Organomet. Chem.2007692255621563210.1016/j.jorganchem.2007.09.017
    [Google Scholar]
  42. AlsharekhM.M. AlthagafiI.I. ShaabanM.R. FarghalyT.A. Microwave-assisted and thermal synthesis of nanosized thiazolyl-phenothiazine derivatives and their biological activities.Res. Chem. Intermed.201945212715410.1007/s11164‑018‑3594‑7
    [Google Scholar]
  43. PrajapatiN.P. PatelK.D. VekariyaR.H. PatelH.D. RajaniD.P. Thiazole fused thiosemicarbazones: Microwave-assisted synthesis, biological evaluation and molecular docking study.J. Mol. Struct.2019117940141010.1016/j.molstruc.2018.11.025
    [Google Scholar]
  44. KimS. SalimA. SwansonS. Douglas KinghornA. Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy.Anticancer. Agents Med. Chem.20066431934510.2174/187152006777698123 16842234
    [Google Scholar]
  45. BabaN.H.K. AshokD. RaoB.A. MadderlaS. MurthyN.Y.S. Microwave-assisted synthesis and biological evaluation of thiazole-substituted dibenzofurans.Hetrocycl. Comun.2018243171176
    [Google Scholar]
  46. UmerS.M. SolangiM. KhanK.M. SaleemR.S.Z. Indole-containing natural products 2019–2022: Isolations, reappraisals, syntheses, and biological activities.Molecules20222721758610.3390/molecules27217586 36364413
    [Google Scholar]
  47. VaddulaB.R. TantakM.P. SadanaR. GonzalezM.A. KumarD. One-pot synthesis and in-vitro anticancer evaluation of 5-(2′-indolyl)thiazoles.Sci. Rep.2016612340110.1038/srep23401 27021742
    [Google Scholar]
  48. KhalilK. RiyadhS. AlkayalN. BashalA. AlharbiK. AlharbiW. Chitosan-strontium oxide nanocomposite: Preparation, characterization, and catalytic potency in thiadiazoles synthesis.Polymers (Basel)20221414282710.3390/polym14142827 35890603
    [Google Scholar]
  49. DhepeS. KumarS. VinayakumarR. RamareddyS.A. KarkiS.S. Microwave-assisted synthesis and antimicrobial activity of some imidazo[2,1-b][1,3,4]thiadiazole derivatives.Med. Chem. Res.20122181550155610.1007/s00044‑011‑9671‑8
    [Google Scholar]
  50. Atta-AllahS.R. AboulMagd, A.M.; Farag, P.S. Design, microwave assisted synthesis, and molecular modeling study of some new 1,3,4-thiadiazole derivatives as potent anticancer agents and potential VEGFR-2 inhibitors.Bioorg. Chem.202111210492310.1016/j.bioorg.2021.104923 33932767
    [Google Scholar]
  51. AggarwalR. HoodaM. KumarP. SumranG. Vision on synthetic and medicinal facets of 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazine scaffold.Top. Curr. Chem. (Cham)202238021010.1007/s41061‑022‑00365‑x 35122161
    [Google Scholar]
  52. SumangalaV. PoojaryB. ChidanandaN. ArulmoliT. ShenoyS. Facile synthesis, cytotoxic and antimicrobial activity studies of a new group of 6-aryl-3-[4-(methylsulfonyl)benzyl]-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines.Eur. J. Med. Chem.201254596410.1016/j.ejmech.2012.04.024 22633832
    [Google Scholar]
  53. El-SayedH.A. AssyM.G. MohamedA.S. An efficient synthesis and antimicrobial activity of N-bridged triazolo[3,4-b]thiadiazine and triazolo[3,4-b]thiadiazole derivatives under microwave irradiation.Synth. Commun.202050997100710.1080/00397911.2020.1726397
    [Google Scholar]
  54. RodriguesM.O. EberlinM.N. NetoB.A.D. How and why to investigate multicomponent reactions mechanisms? A critical review.Chem. Rec.202121102762278110.1002/tcr.202000165 33538117
    [Google Scholar]
  55. NazariZ.E. IranshahiM. Biologically active sesquiterpene coumarins from Ferula species.Phytother. Res.201125331532310.1002/ptr.3311 21031633
    [Google Scholar]
  56. SrikrishnaD. GoduguC. DubeyP.K. A review on pharmacological properties of coumarins.Mini Rev. Med. Chem.2018182113141 27488585
    [Google Scholar]
  57. MamidalaS. PeddiS.R. AravilliR.K. JillojuP.C. MangaV. VedulaR.R. Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: Antibacterial evaluation and molecular docking studies.J. Mol. Struct.2021122512911410.1016/j.molstruc.2020.129114
    [Google Scholar]
  58. RathishI.G. JavedK. BanoS. AhmadS. AlamM.S. PillaiK.K. Synthesis and blood glucose lowering effect of novel pyridazinone substituted benzenesulfonylurea derivatives.Eur. J. Med. Chem.20094462673267810.1016/j.ejmech.2008.12.013 19171410
    [Google Scholar]
  59. Abu-MelhaS. GomhaS. AbouziedA. EdreesM. Abo DenaA. MuhammadZ. Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential antimicrobial agents against antibiotic-resistant bacteria.Molecules20212614426010.3390/molecules26144260 34299535
    [Google Scholar]
  60. KakatiD. SarmaR.K. SaikiaR. BaruaN.C. SarmaJ.C. Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones.Steroids201378332132610.1016/j.steroids.2012.12.003 23287649
    [Google Scholar]
  61. MajhiS. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects‐A late.ChemistrySelect2020540124501246410.1002/slct.202002836
    [Google Scholar]
  62. AsifM. AliA. ZafarA. FarhanM. KhanamH. HadiS.M. Shamsuzzaman, Microwave-assisted one pot synthesis, characterization, biological evaluation and molecular docking studies of steroidal thiazoles.J. Photochem. Photobiol. B201716610411510.1016/j.jphotobiol.2016.11.010 27888739
    [Google Scholar]
  63. WiesnerJ. OrtmannR. JomaaH. SchlitzerM. New antimalarial drugs.Angew. Chem. Int. Ed.200342435274529310.1002/anie.200200569 14613157
    [Google Scholar]
  64. SteinG.E. The 4-quinolone antibiotics: Past, present, and future.Pharmacotherapy19888630131410.1002/j.1875‑9114.1988.tb04088.x 2851772
    [Google Scholar]
  65. AldredK.J. KernsR.J. OsheroffN. Mechanism of quinolone action and resistance.Biochemistry201453101565157410.1021/bi5000564 24576155
    [Google Scholar]
  66. PatelN.B. ParmarR.B. SoniH.I. Lewis acid promoted, one-pot synthesis of fluoroquinolone clubbed 1,3,4-thiadiazole motifs under microwave irradiation: Their biological activities.Curr. Microw. Chem.202071606610.2174/2213335606666191016111642
    [Google Scholar]
  67. WadhwaP. KaurT. SharmaA. The first catalyst and solvent-free synthesis of 2-arylimidazo[2,1-b][1,3,4]thiadiazoles: A comparative assessment of greenness.RSC Advances2015555443534436010.1039/C5RA06747B
    [Google Scholar]
  68. DessìA. CalamanteM. MordiniA. ZaniL. TaddeiM. ReginatoG. Microwave-activated synthesis of thiazolo[5,4-d]thiazoles by a condensation/oxidation sequence.RSC Advances2014431322132810.1039/C3RA45015E
    [Google Scholar]
  69. IvasechkoI. LozynskyiA. SenkivJ. RoszczenkoP. KozakY. FiniukN. KlyuchivskaO. KashchakN. MankoN. MaslyakZ. LesykD. KarkhutA. PolovkovychS. CzarnomysyR. SzewczykO. KozytskiyA. KarpenkoO. KhylukD. GzellaA. BielawskiK. BielawskaA. DzubakP. GurskaS. HajduchM. StoikaR. LesykR. Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone).Eur. J. Med. Chem.202325211530410.1016/j.ejmech.2023.115304 37001390
    [Google Scholar]
  70. SharmaD. SinghM. JoshiJ. GargM. ChaudharyV. BlankenbergD. ChandnaS. KumarV. RaniR. Design and synthesis of thiazole scaffold-based small molecules as anticancer agents targeting the human lactate dehydrogenase a enzyme.ACS Omega2023820175521756210.1021/acsomega.2c07569 37251149
    [Google Scholar]
  71. MamidalaS. MudigundaV.S. PeddiS.R. BokaraK.K. MangaV. VedulaR.R. Design and synthesis of new thiazoles by microwave-assisted method: Evaluation as an anti-breast cancer agents and molecular docking studies.Synth. Commun.202050162488250110.1080/00397911.2020.1781184
    [Google Scholar]
  72. El-NaggarM. SallamH.A. ShabanS.S. Abdel-WahabS.S. E. AmrA.E. AzabM.E. NossierE.S. Al-OmarM.A. Design, synthesis, and molecular docking study of novel heterocycles incorporating 1,3,4-thiadiazole moiety as potential antimicrobial and anticancer agents.Molecules2019246106610.3390/molecules24061066 30889918
    [Google Scholar]
  73. AltıntopM. CiftciH. RadwanM. SeverB. KaplancıklıZ. AliT. KogaR. FujitaM. OtsukaM. ÖzdemirA. Design, synthesis, and biological evaluation of novel 1,3,4-thiadiazole derivatives as potential antitumor agents against chronic myelogenous leukemia, striking effect of nitrothiazole moiety.Molecules2017231597610.3390/molecules23010059 29280989
    [Google Scholar]
  74. ChowrasiaD. KarthikeyanC. ChoureL. Sahabjada; Gupta, M.; Arshad, M.; Trivedi, P. Synthesis, characterization and anti cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles.Arab. J. Chem.201710S2424S242810.1016/j.arabjc.2013.08.026
    [Google Scholar]
  75. JakovljevićK. MatićI.Z. StanojkovićT. KrivokućaA. MarkovićV. JoksovićM.D. MihailovićN. NićiforovićM. JoksovićL. Synthesis, antioxidant and antiproliferative activities of 1,3,4-thiadiazoles derived from phenolic acids.Bioorg. Med. Chem. Lett.201727163709371510.1016/j.bmcl.2017.07.003 28709826
    [Google Scholar]
  76. MetwallyN.H. BadawyM.A. OkpyD.S. Synthesis and anticancer activity of some new thiopyrano[2,3-d]thiazoles incorporating pyrazole moiety.Chem. Pharm. Bull. (Tokyo)201563749550310.1248/cpb.c14‑00885 26133066
    [Google Scholar]
  77. BangadeV.M. MaliP.R. MeshramH.M. Synthesis of potent anticancer substituted 5-benzimidazol-2-amino thiazoles controlled by bifunctional hydrogen bonding under microwave irradiations.J. Org. Chem.20218696056606510.1021/acs.joc.0c02542 33872008
    [Google Scholar]
  78. KassemA.F. AlthomaliR.H. AnwarM.M. El-SofanyW.I. Thiazole moiety: A promising scaffold for anticancer drug discovery.J. Mol. Struct.2024130313751010.1016/j.molstruc.2024.137510
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356325646240715074628
Loading
/content/journals/cmic/10.2174/0122133356325646240715074628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test