Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Transition-metal catalysed activation of unreactive C-H bonds and subsequent C-C bond formation has emerged as a principal and essential tool in the field of synthetic organic chemistry. On the other hand, the microwave heating technique has been intensively used to carry out organic transformation of almost all kinds and has become a promising non-conventional technique for performing synthetic reactions. Direct C-H activation for C-C bond-forming reactions using ruthenium as a catalyst is currently a hot topic and represents a cost-effective synthetic pathway in organic chemistry which is accompanied by the advantages of MW irradiation resulting in shorter reaction time and greener as well as sustainable accomplishments.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356303594240502052813
2024-09-01
2025-02-17
Loading full text...

Full text loading...

References

  1. ZhangM. ZhangY. JieX. ZhaoH. LiG. SuW. Recent advances in directed C–H functionalizations using monodentate nitrogen-based directing groups.Org. Chem. Front.20141784389510.1039/C4QO00068D
    [Google Scholar]
  2. ZhangQ. ShiB.F. From reactivity and regioselectivity to stereoselectivity: An odyssey of designing PIP amine and related directing groups for C—H activation.Chin. J. Chem.201937764765610.1002/cjoc.201900090
    [Google Scholar]
  3. GandeepanP. MüllerT. ZellD. CeraG. WarratzS. AckermannL. 3d transition metals for C–H activation.Chem. Rev.201911942192245210.1021/acs.chemrev.8b00507 30480438
    [Google Scholar]
  4. RejS. AnoY. ChataniN. Bidentate directing groups: An efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds.Chem. Rev.202012031788188710.1021/acs.chemrev.9b00495 31904219
    [Google Scholar]
  5. SunH. GuimondN. HuangY. Advances in the development of catalytic tethering directing groups for C–H functionalization reactions.Org. Biomol. Chem.201614368389839710.1039/C6OB01258B 27506568
    [Google Scholar]
  6. FrostC.G. MarceP. LiuP.M. Light guided chemoselective olefin metathesis reactions.Organomet. Chem.2016405487
    [Google Scholar]
  7. StephensD.E. LarionovO.V. Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines.Tetrahedron201571468683871610.1016/j.tet.2015.08.034 26640303
    [Google Scholar]
  8. WangN-X. XingY. ZhangW. Advances in transition-metal-catalyzed direct sp3-carbon–hydrogen bond functionalization.Synlett201526152088209810.1055/s‑0034‑1381031
    [Google Scholar]
  9. YangJ. Transition metal catalyzed meta-C–H functionalization of aromatic compounds.Org. Biomol. Chem.20151371930194110.1039/C4OB02171A 25522930
    [Google Scholar]
  10. LiuY. KimJ. ChaeJ. Heterocycle construction via transition metal-catalyzed C-H functionalization and C-heteroatom bond formation.Curr. Org. Chem.201418162049207110.2174/1385272819666140728174621
    [Google Scholar]
  11. SchranckJ. TliliA. BellerM. Functionalization of remote C-H bonds: Expanding the frontier.Angew. Chem. Int. Ed.201453369426942810.1002/anie.201405714 25066575
    [Google Scholar]
  12. FarmerM.E. LafortezaB.N. YuJ.Q. Unlocking nature’s CH bonds.Bioorg. Med. Chem.201422164445445210.1016/j.bmc.2014.05.031 24909676
    [Google Scholar]
  13. KapdiA.R. Organometallic aspects of transition-metal catalysed regioselective C–H bond functionalisation of arenes and heteroarenes.Dalton Trans.20144383021303410.1039/c3dt52737a 24419051
    [Google Scholar]
  14. OkamotoK. ZhangJ. HousekeeperJ.B. MarderS.R. LuscombeC.K. C–H arylation reaction: Atom efficient and greener syntheses of π-conjugated small molecules and macromolecules for organic electronic materials.Macromolecules201346208059807810.1021/ma401190r
    [Google Scholar]
  15. RousseauxS. LiégaultB. FagnouK. Modern Tools in the Synthesis of Complex Bioactive Molecules; Cossy, J. ArseniyadisS. John Wiley & Sons2012132
    [Google Scholar]
  16. YamaguchiJ. YamaguchiA.D. ItamiK. C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals.Angew. Chem. Int. Ed.201251368960900910.1002/anie.201201666 22887739
    [Google Scholar]
  17. AnastasP.T. WarnerJ.C. Green Chemistry: Theory and Practice.New YorkOxford University Press199816
    [Google Scholar]
  18. SehnalP. TaylorR.J.K. FairlambI.J.S. Emergence of palladium(IV) chemistry in synthesis and catalysis.Chem. Rev.2010110282488910.1021/cr9003242 20143876
    [Google Scholar]
  19. SunC.L. LiB.J. ShiZ.J. Pd-catalyzed oxidative coupling with organometallic reagents via C–H activation.Chem. Commun.201046567768510.1039/b908581e 20087486
    [Google Scholar]
  20. LyonsT.W. SanfordM.S. Palladium-catalyzed ligand-directed C-H functionalization reactions.Chem. Rev.201011021147116910.1021/cr900184e 20078038
    [Google Scholar]
  21. ColbyD.A. BergmanR.G. EllmanJ.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation.Chem. Rev.2010110262465510.1021/cr900005n 19438203
    [Google Scholar]
  22. HeJ. WasaM. ChanK.S.L. ShaoQ. YuJ.Q. Palladium-catalyzed transformations of alkyl C–H bonds.Chem. Rev.2017117138754878610.1021/acs.chemrev.6b00622 28697604
    [Google Scholar]
  23. DongZ. RenZ. ThompsonS.J. XuY. DongG. Transition-metal-catalyzed C–H alkylation using alkenes.Chem. Rev.2017117139333940310.1021/acs.chemrev.6b00574 28125210
    [Google Scholar]
  24. KozhushkovS.I. AckermannL. Ruthenium-catalyzed direct oxidative alkenylation of arenes through two fold C–H bond functionalization.Chem. Sci.20134388689610.1039/C2SC21524A
    [Google Scholar]
  25. ThirunavukkarasuV.S. KozhushkovS.I. AckermannL. C–H nitrogenation and oxygenation by ruthenium catalysis.Chem. Commun.2014501293910.1039/C3CC47028H 24212194
    [Google Scholar]
  26. BegumT. MondalM. BorpuzariM.P. KarR. KalitaG. GogoiP.K. BoraU. An immobilized symmetrical bis-(NHC) palladium complex as a highly efficient and recyclable Suzuki–Miyaura catalyst in aerobic aqueous media.Dalton Trans.201746253954610.1039/C6DT03097A 27966692
    [Google Scholar]
  27. ManikandanR. JeganmohanM. Recent advances in the ruthenium (II)-catalyzed chelation-assisted C–H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway.Chem. Commun.201753648931894710.1039/C7CC03213G 28726865
    [Google Scholar]
  28. MolnarA. PappA. Ruthenium-catalyzed C–H activation and coupling reactions in organic synthesis.Curr. Org. Chem.201520438145810.2174/1385272819666150205144653
    [Google Scholar]
  29. RuizS. VilluendasP. UrriolabeitiaE.P. Ru-catalysed C–H functionalisations as a tool for selective organic synthesis.Tetrahedron Lett.201657313413343210.1016/j.tetlet.2016.06.117
    [Google Scholar]
  30. ZhaG.F. QinH.L. KantchevE.A.B. Ruthenium-catalyzed direct arylations with aryl chlorides.RSC Advances2016637308753088510.1039/C6RA02742C
    [Google Scholar]
  31. BruneauC. DixneufP.H. Ruthenium (II)-Catalysed Functionalisation of C–H Bonds with Alkenes: Alkenylation versus Alkylation.Top. Organomet. Chem DixneufP. H. DoucetH. SpringerCham201655137188
    [Google Scholar]
  32. ManikandanR. JeganmohanM. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: Synthesis of trisubstituted alkenes.Org. Biomol. Chem.20151342104201043610.1039/C5OB01472G 26383714
    [Google Scholar]
  33. LiB. DixneufP.H. Ruthenium(II)-Catalysed sp2 C–H Bond Functionalization by C–C Bond Formation.Top. Organomet. Chem DixneufP. H. BruneauC. SpringerCham201448119193
    [Google Scholar]
  34. De SarkarS. LiuW. KozhushkovS.I. AckermannL. Weakly coordinating directing groups for ruthenium(II)‐ catalyzed C-H activation.Adv. Synth. Catal.201435671461147910.1002/adsc.201400110
    [Google Scholar]
  35. Juliá-HernándezF. SimonettiM. LarrosaI. Metalation dictates remote regioselectivity: Ruthenium-catalyzed functionalization of meta C(Ar)-H Bonds.Angew. Chem. Int. Ed.20135244114581146010.1002/anie.201306425 24030678
    [Google Scholar]
  36. LiB. DixneufP.H. sp2 C–H bond activation in water and catalytic cross-coupling reactions.Chem. Soc. Rev.201342135744576710.1039/c3cs60020c 23525331
    [Google Scholar]
  37. MuraiS. KakiuchiF. SekineS. TanakaY. KamataniA. SonodaM. ChataniN. Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins.Nature1993366645552953110.1038/366529a0
    [Google Scholar]
  38. TrostB.M. On inventing reactions for atom economy.Acc. Chem. Res.200235969570510.1021/ar010068z 12234199
    [Google Scholar]
  39. AnastasP. EghbaliN. Green chemistry: principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B 20023854
    [Google Scholar]
  40. LiC.J. AnastasP.T. Green Chemistry: present and future.Chem. Soc. Rev.20124141413141410.1039/c1cs90064a 22268063
    [Google Scholar]
  41. VarmaR.S. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation.Green Chem.20141642027204110.1039/c3gc42640h
    [Google Scholar]
  42. LuqueR. LamF.L-Y. Sustainable Catalysis Energy-Efficient Reactions and Applications; Wiley-VCH Verlag GmbH & Co.KGaAGermany201819
    [Google Scholar]
  43. ZhangW. CueB.W. Green Techniques for Organic Synthesis and Medicinal Chemistry.2nd edNew YorkJohn Wiley & Sons, Ltd20181810.1002/9781119288152
    [Google Scholar]
  44. BeillardA. BantreilX. MétroT.X. MartinezJ. LamatyF. Alternative technologies that facilitate access to discrete metal complexes.Chem. Rev.2019119127529760910.1021/acs.chemrev.8b00479 31059243
    [Google Scholar]
  45. DaştanA. KulkarniA. TörökB. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches †.Green Chem.2012141173710.1039/C1GC15837F
    [Google Scholar]
  46. GawandeM.B. ShelkeS.N. ZborilR. VarmaR.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.Acc. Chem. Res.20144741338134810.1021/ar400309b 24666323
    [Google Scholar]
  47. RathiA.K. GawandeM.B. ZborilR. VarmaR.S. Microwave-assisted synthesis Catalytic applications in aqueous media.Coord. Chem. Rev.2015291689410.1016/j.ccr.2015.01.011
    [Google Scholar]
  48. TsujiM. Microwave‐assisted synthesis of metallic nanomaterials in liquid phase.Chem. Sel.20172280581910.1002/slct.201700011
    [Google Scholar]
  49. De la HozA. LoupyA. Microwaves in Organic Synthesis, 3rd; Wiley-VCH Verlag GmbH & Co.KGaAWeinheim, Germany201319
    [Google Scholar]
  50. SchabelT. PlietkerB. Microwave-accelerated Ru-catalyzed hydrovinylation of alkynes and enynes: a straightforward approach toward 1,3-dienes and 1,3,5-trienes.Chemistry201319226938694110.1002/chem.201300790 23606342
    [Google Scholar]
  51. NeisiusN.M. PlietkerB. Die Ruthenium‐katalysierte Hydrovinylierung interner Alkine mit Acrylsäurederivaten ein atomökonomischer Zugang zu hochsubstituierten 1,3‐Dienen.Angew. Chem.2009121315863586610.1002/ange.200901928
    [Google Scholar]
  52. NishimuraT. WashitakeY. UemuraS. Ruthenium/halide catalytic system for C-C bond forming reaction between alkynes and unsaturated carbonyl compounds.Adv. Synth. Catal.200734917-182563257110.1002/adsc.200700371
    [Google Scholar]
  53. MiuraH. ShimuraS. HosokawaS. YamazoeS. WadaK. InoueM. Intermolecular coupling of alkynes with acrylates by recyclable oxide‐supported ruthenium catalysts: formation of distorted ruthenium(IV)‐oxo species on ceria as a key precursor of active species.Adv. Synth. Catal.201135314-152837284310.1002/adsc.201100415
    [Google Scholar]
  54. HijaziA. ParkhomenkoK. DjukicJ.P. ChemmiA. PfefferM. Head‐to‐head homo‐coupling of arylethynes catalysed by (dicarbonyl)ruthenium chloride metallacycles: selective synthesis of (E) ‐1,4‐Diarylbut‐1‐en‐3‐ynes.Adv. Synth. Catal.2008350101493149610.1002/adsc.200800075
    [Google Scholar]
  55. GehrmannT. SchollS.A. FillolJ.L. WadepohlH. GadeL.H. Alternative reaction pathways in domino reactions of hydrazinediidozirconium complexes with alkynes.Chemistry201218133925394110.1002/chem.201103497 22345083
    [Google Scholar]
  56. RubinaM. GevorgyanV. Can agostic interaction affect regiochemistry of carbopalladation? Reverse regioselectivity in the palladium-catalyzed dimerization of aryl acetylenes.J. Am. Chem. Soc.200112344111071110810.1021/ja016934k 11686734
    [Google Scholar]
  57. BianchiniC. FredianiP. MasiD. PeruzziniM. ZanobiniF. Regio and stereoselective dimerization of phenylacetylene to (Z)-1,4-diphenylbut-3-en-1-yne by ruthenium(II) catalysis. reaction mechanism involving intermolecular protonation of sigma-alkynyl by 1-alkyne.Organometallics199413114616463210.1021/om00023a074
    [Google Scholar]
  58. SchäyerM. MahrN. WolfJ. WernerH. Metal-induced linkage of C2 units to enynes and butatrienes: two routes to the dimerization of 1-alkynes.Angew. Chem.199310591377137910.1002/ange.19931050919
    [Google Scholar]
  59. KatayamaH. YariH. TanakaM. OzawaF. (Z)-Selective cross-dimerization of arylacetylenes with silylacetylenes catalyzed by vinylideneruthenium complexes.Chem. Commun.2005344336433810.1039/b504436g 16113740
    [Google Scholar]
  60. WernerH. MeyerM. EsteruelasM.A. SolaE. OroL.A. Bis-alkynyl- and hydrido-alkynyl-osmium(II) and ruthenium(II) complexes containing triisopropylphosphine as ligand.J. Organomet. Chem.19893661-218719610.1016/0022‑328X(89)87326‑7
    [Google Scholar]
  61. KappeC.O. Kontrolliertes Erhitzen mit Mikrowellen in der modernen organischen Synthese.Angew. Chem.2004116466408644310.1002/ange.200400655
    [Google Scholar]
  62. HayesB.L. Recent advances in microwave-assisted synthesis.Aldrichim Acta2004376676
    [Google Scholar]
  63. VilluendasP. UrriolabeitiaE.P. Primary amines as directing groups in the Ru-catalyzed synthesis of isoquinolines, benzoisoquinolines, and thienopyridines.J. Org. Chem.201378115254526310.1021/jo400344m 23650873
    [Google Scholar]
  64. RuizS. VilluendasP. OrtuñoM.A. LledósA. UrriolabeitiaE.P. Ruthenium‐catalyzed oxidative coupling of primary amines with internal alkynes through C-H bond activation: Scope and mechanistic studies.Chemistry201521238626863610.1002/chem.201500338 25916684
    [Google Scholar]
  65. SwamyT. Maheshwar RaoB. YadavJ.S. RavinderV. SridharB. Subba ReddyB.V. Microwave-assisted, ruthenium-catalyzed intramolecular amide-alkyne annulation for the rapid synthesis of fused tricyclic isoquinolinones.RSC Advances2015584685106851410.1039/C5RA11133A
    [Google Scholar]
  66. DrevM. GrošeljU. LedinekB. PerdihF. SveteJ. ŠtefaneB. PožganF. Microwave-assisted, ruthenium-catalyzed intramolecular amide-alkyne annulation for the rapid synthesis of fused tricyclic isoquinolinones.Org. Lett.201820175268527310.1021/acs.orglett.8b02169 30130120
    [Google Scholar]
  67. SharmaN. BahadurV. SharmaU.K. SahaD. LiZ. KumarY. ColaersJ. SinghB.K. Van der EyckenE.V. Microwave‐assisted ruthenium‐catalysed ortho ‐C−H Functionalization of N ‐Benzoyl α ‐amino ester derivatives.Adv. Synth. Catal.2018360163083308910.1002/adsc.201800458
    [Google Scholar]
  68. DrevM. GrošeljU. LedinekB. PerdihF. SveteJ. ŠtefaneB. PožganF. Microwave‐promoted ortho ‐C−H bond (hetero)arylation of arylpyrimidines in water catalyzed by ruthenium(II)−carboxylate.ChemCatChem201810173824383210.1002/cctc.201800250
    [Google Scholar]
  69. SandorA.G. DiabaF. Microwave-assisted benzylic c-h activation using ruthenium catalysts. symthesis of β-lactams.Int. J. Curr. Res.2019110969306936
    [Google Scholar]
  70. SarathkumarS. KavalaV. YaoC.F. Microwave‐assisted ruthenium(II)‐catalyzed C−H/N−O activation of N ‐methoxybenzamides with alkynylsulfane.Asian J. Org. Chem.20198101830183310.1002/ajoc.201900383
    [Google Scholar]
  71. DeshmukhD.S. GangwarN. BhanageB.M. Rapid and atom economic synthesis of isoquinolines and isoquinolinones by C–H/N–N activation using a homogeneous recyclable ruthenium catalyst in PEG Media.Eur. J. Org. Chem.20192019182919292710.1002/ejoc.201900366
    [Google Scholar]
  72. DeshmukhD.S. BhanageB.M. Ruthenium-catalyzed annulation of N-Cbz hydrazones via C–H/N–N bond activation for the rapid synthesis of isoquinolines.Synthesis201951122506251410.1055/s‑0037‑1611795
    [Google Scholar]
  73. WangQ. ShiL. LiuS. ZhiC. FuL.R. ZhuX. HaoX.Q. SongM.P. Solvent-free and room temperature microwave-assisted direct C7 allylation of indolines via sequential C–H and C–C activation.RSC Advances20201018108831088710.1039/D0RA02016H 35492909
    [Google Scholar]
  74. LiX.H. GongJ.F. SongM.P. Microwave‐assisted ruthenium‐ and rhodium‐catalyzed couplings of α ‐amino acid ester‐derived phosphinamides with alkynes.Chem. Asian J.2022172e20210115810.1002/asia.202101158 34846096
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356303594240502052813
Loading
/content/journals/cmic/10.2174/0122133356303594240502052813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test