Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Microwave-Assisted Synthesis (MAS) has emerged as a groundbreaking technique revolutionizing the field of biomedical and tissue engineering. This review aims to explore the fundamental principles, techniques, and applications of MAS in these domains. Beginning with an overview highlighting its significance, we delve into the basic principles, mechanisms, and comparative analysis with conventional methods. Subsequently, the review explores MAS techniques in biomaterial synthesis, tissue scaffold fabrication, functionalization, and nanomaterial synthesis, along with their role in drug delivery systems. We then examine its diverse applications, including rapid biomaterial synthesis, property tailoring, biocompatibility enhancements, and tissue regeneration strategies. Furthermore, we address the challenges and future perspectives, focusing on safety considerations, understanding cellular responses, integration with advanced technologies, regulatory aspects, and future directions. This comprehensive review underscores MAS as a transformative tool driving innovations in biomedical research and therapeutic applications.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356321729240715094501
2024-09-01
2024-11-26
Loading full text...

Full text loading...

References

  1. El SeoudO.A. HeinzeT. Organic esters of cellulose: New perspectives for old polymers.Adv. Polym. Sci.200518610314910.1007/b136818
    [Google Scholar]
  2. RahmanZ. ZidanA.S. KhanM.A. Non-destructive methods of characterization of risperidone solid lipid nanoparticles.Eur. J. Pharm. Biopharm.201076112713710.1016/j.ejpb.2010.05.003 20470882
    [Google Scholar]
  3. AppukkuttanP. Van der EyckenE. Recent developments in microwave-assisted, transition-metal-catalysed C-C and C-N bond-forming reactions.Eur. J. Org. Chem.2008200871133115510.1002/ejoc.200701056
    [Google Scholar]
  4. CaddickS. Microwave assisted organic reactions.Tetrahedron19955138104031043210.1016/0040‑4020(95)00662‑R
    [Google Scholar]
  5. KarunakaranG. ChoE.B. KumarG.S. KolesnikovE. JanarthananG. PillaiM.M. RajendranS. BoobalanS. GorshenkovM.V. KuznetsovD. Ascorbic acid-assisted microwave synthesis of mesoporous ag-doped hydroxyapatite nanorods from biowaste seashells for implant applications.ACS Appl. Bio Mater.2019252280229310.1021/acsabm.9b00239 35030667
    [Google Scholar]
  6. BattoclettiJ.H. Biomedical applications of microwave engineering. Handbook of Microwave Technology.Elsevier199510.1016/B978‑012374695‑5/50030‑4
    [Google Scholar]
  7. SilakariP. SinghJ. SharmaS. Microwave synthesizer: A biomedical engineering technique with advanced applications.Curr. Mat. Sci.2024171657610.2174/2666145416666230223115523
    [Google Scholar]
  8. SinghG. SinghR.P. JollyS.S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review.J. Sol-Gel Sci. Technol.202094350553010.1007/s10971‑020‑05222‑1
    [Google Scholar]
  9. KrishnakumarG.S. SampathS. MuthusamyS. JohnM.A. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review.Mater. Sci. Eng. C20199694195410.1016/j.msec.2018.11.081 30606606
    [Google Scholar]
  10. KhalidH. SuhaibF. ZahidS. AhmedS. JamalA. KaleemM. KhanA.S. Microwave-assisted synthesis and in vitro osteogenic analysis of novel bioactive glass fibers for biomedical and dental applications.Biomed. Mater.201814101500510.1088/1748‑605X/aae3f0 30251708
    [Google Scholar]
  11. LiS. ChenC. ZhangD. ZhangX. SunB. LvS. Microwave-assisted fast and efficient dissolution of silkworm silk for constructing fibroin-based biomaterials.Chem. Eng. Sci.201818928629510.1016/j.ces.2018.06.003
    [Google Scholar]
  12. KumarA. KuangY. LiangZ. SunX. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review.Materials Today Nano20201110007610.1016/j.mtnano.2020.100076
    [Google Scholar]
  13. NüchterM. OndruschkaB. BonrathW. GumA. Microwave assisted synthesis a critical technology overview.Green Chem.20046312814110.1039/B310502D
    [Google Scholar]
  14. ZitoC.A. OrlandiM.O. VolantiD.P. Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications.J. Electroceram.201840427129210.1007/s10832‑018‑0128‑z
    [Google Scholar]
  15. RaoS.S. SaptamiK. VenkatesanJ. RekhaP.D. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity.Int. J. Biol. Macromol.202016374575510.1016/j.ijbiomac.2020.06.230 32599248
    [Google Scholar]
  16. BaghbanzadehM. CarboneL. CozzoliP.D. KappeC.O. Microwave-assisted synthesis of colloidal inorganic nanocrystals.Angew. Chem. Int. Ed.20115048113121135910.1002/anie.201101274 22058070
    [Google Scholar]
  17. ChandrasekaranS. RamanathanS. BasakT. Microwave material processing-A review.AIChE J.201258233036310.1002/aic.12766
    [Google Scholar]
  18. Díaz-OrtizÁ. PrietoP. de la HozA. A critical overview on the effect of microwave irradiation in organic synthesis.Chem. Rec.2019191859710.1002/tcr.201800059 30035361
    [Google Scholar]
  19. WangH.Q. NannT. Monodisperse upconverting nanocrystals by microwave-assisted synthesis.ACS Nano20093113804380810.1021/nn9012093 19873986
    [Google Scholar]
  20. DzierbaC.D. CombsA.P. Microwave-assisted chemistry as a tool for drug discovery.Annu. Rep. Med. Chem.20023724725610.1016/S0065‑7743(02)37026‑X
    [Google Scholar]
  21. NomanbhayS. OngM. A review of microwave-assisted reactions for biodiesel production.Bioengineering2017425710.3390/bioengineering4020057 28952536
    [Google Scholar]
  22. SaleemQ. TorabfamM. FidanT. KurtH. YüceM. ClarkeN. BayazitM.K. Microwave-promoted continuous flow systems in nanoparticle synthesis: A perspective.ACS Sustain. Chem.& Eng.202193099881001510.1021/acssuschemeng.1c02695
    [Google Scholar]
  23. DesbrièresJ. PetitC. ReynaudS. Microwave-assisted modifications of polysaccharides.Pure Appl. Chem.201486111695170610.1515/pac‑2014‑0711
    [Google Scholar]
  24. KheradmandfardM. Kashani-BozorgS.F. Noori-AlfesharakiA.H. KharaziA.Z. KheradmandfardM. AbutalebiN. Ultra-fast, highly efficient and green synthesis of bioactive forsterite nanopowder via microwave irradiation.Mater. Sci. Eng. C20189223624410.1016/j.msec.2018.06.026 30184747
    [Google Scholar]
  25. PandeyA. PandeyG. AswathP. Synthesis of polylactic acid-polyglycolic acid blends using microwave radiation.J. Mech. Behav. Biomed. Mater.20081322723310.1016/j.jmbbm.2007.12.001 19627787
    [Google Scholar]
  26. LiuL.J. ZhangC. LiaoL.Q. WangX.L. ZhuoR.X. Microwave-assisted polymerization of D, L-lactide with stannous octanoate as catalyst.Chin. Chem. Lett.2001128
    [Google Scholar]
  27. ZhangC. LiaoL. LiuL. Rapid ring-opening polymerization of D,L-lactide by microwaves.Macromol. Rapid Commun.200425151402140510.1002/marc.200400106
    [Google Scholar]
  28. CohnD. YounesH. Biodegradable PEO/PLA block copolymers.J. Biomed. Mater. Res.19882211993100910.1002/jbm.820221104 3241012
    [Google Scholar]
  29. CohnD. Hotovely-SalomonA. Biodegradable multiblock PEO/PLA thermoplastic elastomers: Molecular design and properties.Polymer20054672068207510.1016/j.polymer.2005.01.012
    [Google Scholar]
  30. YuZ. LiuL. Microwave-assisted synthesis of poly ε-caprolactone-poly ethylene glycol-poly ε-caprolactone tri-block co-polymers and use as matrices for sustained delivery of ibuprofen taken as model drug.J. Biomater. Sci. Polym. Ed.200516895797110.1163/1568562054414667 16128231
    [Google Scholar]
  31. ZhangC. LiaoL. GongS.S. Microwave-assisted synthesis of PLLA-PEG-PLLA triblock copolymers.Macromol. Rapid Commun.200728442242710.1002/marc.200600709
    [Google Scholar]
  32. AdamsN. SchubertU.S. Poly 2-oxazolines in biological and biomedical application contexts.Adv. Drug Deliv. Rev.200759151504152010.1016/j.addr.2007.08.018 17904246
    [Google Scholar]
  33. FijtenM.W.M. KranenburgJ.M. ThijsH.M.L. PaulusR.M. van LankveltB.M. de HulluJ. SpringintveldM. ThielenD.J.G. TweedieC.A. HoogenboomR. Van VlietK.J. SchubertU.S. Synthesis and structure-property relationships of random and block copolymers: A direct comparison for copoly 2-oxazolines.Macromolecules200740165879588610.1021/ma070720r
    [Google Scholar]
  34. BloksmaM.M. RogersS. SchubertU.S. HoogenboomR. Secondary structure formation of main-chain chiral poly 2-oxazolines in solution.Soft Matter20106599410.1039/b921467d
    [Google Scholar]
  35. HoogenboomR. WiesbrockF. LeenenM.A.M. ThijsH.M.L. HuangH. FustinC-A. GuilletP. GohyJ-F. SchubertU.S. Synthesis and aqueous micellization of amphiphilic tetrablock terand quarterpoly 2-oxazolines.Macromolecules20074082837284310.1021/ma062725e
    [Google Scholar]
  36. SosnikA. CarcabosoA. ChiappettaD. Polymeric nanocarriers: new endeavors for the optimization of the technological aspects of drugs.Recent Pat. Biomed. Eng.200811435910.2174/1874764710801010043
    [Google Scholar]
  37. ZdrahalaR.J. ZdrahalaI.J. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future.J. Biomater. Appl.1999141679010.1177/088532829901400104 10405885
    [Google Scholar]
  38. CaraccioloP.C. ThomasV. VohraY.K. BuffaF. AbrahamG.A. Electrospinning of novel biodegradable polyester urethanes and poly(ester urethane urea)s for soft tissue-engineering applications.J. Mater. Sci. Mater. Med.200920102129213710.1007/s10856‑009‑3768‑3 19434481
    [Google Scholar]
  39. MallakpourS. RafiemanzelatF. FaghihiK. Synthesis and characterization of new self-colored thermally stable polyamide-ether-urethanes based on an azo dye and different diisocyanates.Dyes Pigments200774371372210.1016/j.dyepig.2006.05.007
    [Google Scholar]
  40. KnopK. HoogenboomR. FischerD. SchubertU.S. Polyethylene glycol in drug delivery: pros and cons as well as potential alternatives.Angew. Chem. Int. Ed.201049366288630810.1002/anie.200902672 20648499
    [Google Scholar]
  41. WilliamsD.F. The williams dictionary of biomaterials.Eng. Mat. Sci.Liverpool University Press199910.5949/UPO9781846314438
    [Google Scholar]
  42. DharmanM.M. AhnJ-Y. LeeM-K. ShimH-L. KimK-H. KimI. ParkD-W. A novel and faster route for the synthesis of polyether-polycarbonate from carbon dioxide and epoxide through microwave irradiation.Res. Chem. Intermed.2008348-983584410.1007/BF03036945
    [Google Scholar]
  43. ChattiS. BortolussiM. LoupyA. BlaisJ.C. BogdalD. MajdoubM. Efficient synthesis of polyethers from isosorbide by microwave-assisted phase transfer catalysis.Eur. Polym. J.20023891851186110.1016/S0014‑3057(02)00071‑X
    [Google Scholar]
  44. ChattiS. BortolussiM. LoupyA. BlaisJ.C. BogdalD. RogerP. Synthesis of new polyethers derived from isoidide under phase‐transfer catalysis: Reactivity and selectivity under microwaves and classical heating.J. Appl. Polym. Sci.20039051255126610.1002/app.12719
    [Google Scholar]
  45. RosenH.B. ChangJ. WnekG.E. LinhardtR.J. LangerR. Bioerodible polyanhydrides for controlled drug delivery.Biomaterials19834213113310.1016/0142‑9612(83)90054‑6 6860755
    [Google Scholar]
  46. VogelB.M. MallapragadaS.K. NarasimhanB. Rapid synthesis of polyanhydrides by microwave polymerization.Macromol. Rapid Commun.200425133033310.1002/marc.200300156
    [Google Scholar]
  47. BabićM.M. BožićB.Đ. BožićB.Đ. UšćumlićG.S. TomićS.L. The innovative combined microwave-assisted and photo-polymerization technique for synthesis of the novel degradable hydroxyethyl methacrylate/gelatin based scaffolds.Mater. Lett.201821323624010.1016/j.matlet.2017.11.087
    [Google Scholar]
  48. LeeS.H. LeeK.W. GadeP.S. RobertsonA.M. WangY. Microwave-assisted facile fabrication of porous polyglycerol sebacate scaffolds.J. Biomater. Sci. Polym. Ed.2018297-990791610.1080/09205063.2017.1335076 28569644
    [Google Scholar]
  49. BeşkardeşI.G. DemirtaşT.T. DurukanM.D. GümüşderelioğluM. Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds.J. Tissue Eng. Regen. Med.20159111233124610.1002/term.1677 23239627
    [Google Scholar]
  50. Kaynak BayrakG. DemirtaşT.T. GümüşderelioğluM. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.Carbohydr. Polym.201715780381310.1016/j.carbpol.2016.10.016 27987994
    [Google Scholar]
  51. Ruiz-TrejoE. AzadA.K. IrvineJ.T.S. A 60-second microwave-assisted synthesis of nickel foam and its application to the impregnation of porous scaffolds.J. Electrochem. Soc.20151623F273F27910.1149/2.0531503jes
    [Google Scholar]
  52. MakvandiP. AliG.W. Della SalaF. Abdel-FattahW.I. BorzacchielloA. Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration.Mater. Sci. Eng. C202010711019510.1016/j.msec.2019.110195 31761207
    [Google Scholar]
  53. Radwan-PragłowskaJ. PiątkowskiM. JanusŁ. BogdałD. MatysekD. CablikV. 3D scaffolds prepared from acylated chitosan applicable in skin regeneration synthesis and characterization.IJPAC Int. J. Polym. Anal. Charact.2019241758610.1080/1023666X.2018.1553348
    [Google Scholar]
  54. PiątkowskiM. Radwan-PragłowskaJ. JanusŁ. BogdałD. MatysekD. CablikV. Microwave-assisted synthesis and characterization of chitosan aerogels doped with Au-NPs for skin regeneration.Polym. Test.20197336637610.1016/j.polymertesting.2018.11.024
    [Google Scholar]
  55. İlhanG.T. IrmakG. GümüşderelioğluM. Microwave assisted methacrylation of Kappa carrageenan: A bioink for cartilage tissue engineering.Int. J. Biol. Macromol.20201643523353410.1016/j.ijbiomac.2020.08.241 32890561
    [Google Scholar]
  56. Radwan-PragłowskaJ. PiątkowskiM. JanusŁ. BogdałD. MatysekD. CablikV. Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for biomedical applications.IJPAC Int. J. Polym. Anal. Charact.201823872172910.1080/1023666X.2018.1504471
    [Google Scholar]
  57. DharmalingamK. PadmavathiG. KunnumakkaraA.B. AnandalakshmiR. Microwave-assisted synthesis of cellulose/zinc-sulfate calcium-phosphate (ZSCAP) nanocomposites for biomedical applications.Mater. Sci. Eng. C201910053554310.1016/j.msec.2019.02.109 30948090
    [Google Scholar]
  58. WangH. ZhangX. ManiM. JaganathanS. HuangY. WangC. Microwave-assisted dip coating of Aloe vera on metallocene polyethylene incorporated with nano-rods of hydroxyapaptite for bone tissue engineering.Coatings201771118210.3390/coatings7110182
    [Google Scholar]
  59. KheradmandfardM. Noori-AlfesharakiA.H. Zargar-KharaziA. KheradmandfardM. Kashani-BozorgS.F. Ultra-fast microwave-assisted synthesis of diopside nanopowder for biomedical applications.Ceram. Int.20184415187521875810.1016/j.ceramint.2018.07.105
    [Google Scholar]
  60. KalitaG. AyhanM.E. SharmaS. ShindeS.M. GhimireD. WakitaK. UmenoM. TanemuraM. Low temperature deposited graphene by surface wave plasma CVD as effective oxidation resistive barrier.Corros. Sci.20147818318710.1016/j.corsci.2013.09.013
    [Google Scholar]
  61. KalitaG. KayasthaM.S. UchidaH. WakitaK. UmenoM. Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices.RSC Adv.201228322510.1039/c2ra01024k
    [Google Scholar]
  62. CookJ.P. GoodallG.W. KhutoryanskayaO.V. KhutoryanskiyV.V. Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions.Macromol. Rapid Commun.201233433233610.1002/marc.201100742 22252908
    [Google Scholar]
  63. WangY. AhmedA. AzamA. BingD. ShanZ. ZhangZ. TariqM.K. SultanaJ. MushtaqR.T. MehboobA. XiaohuC. RehmanM. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing.J. Manuf. Syst.20216070973310.1016/j.jmsy.2021.07.023 35068653
    [Google Scholar]
  64. ZhangL. ZhengG.J. GuoY.T. ZhouL. DuJ. HeH. Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization.Asian Pac. J. Trop. Med.20147213614010.1016/S1995‑7645(14)60009‑2 24461527
    [Google Scholar]
  65. JavanbakhtS. ShaabaniA. Stimuli-responsive bio-based quantum dots in biomedical applications. Nanoengineering of Biomaterials.Drug Delivery & Biomedical Applications20212210.1002/9783527832095.ch28
    [Google Scholar]
  66. JeongC.G. AtalaA. 3D printing and biofabrication for load bearing tissue engineering.Adv. Exp. Med. Biol.201588131410.1007/978‑3‑319‑22345‑2_1
    [Google Scholar]
  67. KalitaG. WakitaK. UmenoM. Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application.RSC Adv.201227281510.1039/c2ra00648k
    [Google Scholar]
  68. SoodA. DasS.S. DevA. BhardwajD. KumarA. AgrawalG. HanS.S. Fluorescent nanocomposites loaded hydrogels as a theranostic platform for advanced healthcare applications: Recent trends and opportunities.Eur. Polym. J.202319611232310.1016/j.eurpolymj.2023.112323
    [Google Scholar]
  69. XuQ. TangY. ZhuP. ZhangW. ZhangY. SolisO.S. HuT.S. WangJ. Machine learning guided microwave-assisted quantum dot synthesis and an indication of residual H2O2 in human teeth.Nanoscale20221437137711377810.1039/D2NR03718A 36102636
    [Google Scholar]
  70. JovanovicJ. StankovicB. AdnadjevicB. Kinetics of isothermal dehydration of equilibrium swollen PAAG hydrogel under the microwave heating conditions.J. Therm. Anal. Calorim.2017127165566210.1007/s10973‑016‑5440‑8
    [Google Scholar]
  71. GajjarJ.A. VekariyaR.H. SharmaV.S. KherS.N. RajaniD.P. ParekhH.M. Mesomorphic properties, microwave-assisted synthesis, and antimicrobial evaluation of novel Schiff base functionalized resorcin[4]arene derivatives.Mol. Cryst. Liq. Cryst.20217151375510.1080/15421406.2020.1856615
    [Google Scholar]
  72. DąbrowskaS. ChudobaT. WojnarowiczJ. ŁojkowskiW. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review.Crystals201881037910.3390/cryst8100379
    [Google Scholar]
  73. HashimiA.S. GintingR.T. ChinS.X. LauK.S. Nazhif Mohd NohanM.A. ZakariaS. YapC.C. ChiaC.H. Fast microwave-assisted synthesis of copper nanowires as reusable high-performance transparent conductive electrode.Curr. Appl. Phys.202020120521110.1016/j.cap.2019.11.006
    [Google Scholar]
  74. ZhangC. PanH. WangX. SunS.K. Microwave-assisted ultrafast fabrication of high-performance polypyrrole nanoparticles for photothermal therapy of tumors in vivo.Biomater. Sci.20186102750275610.1039/C8BM00653A 30187038
    [Google Scholar]
  75. KabirE. Application of microwave heating in polymer synthesis: A review.Resul. Chem.2023610117810.1016/j.rechem.2023.101178
    [Google Scholar]
  76. ZhangY.S. KhademhosseiniA. Advances in engineering hydrogels.Science20173566337eaaf362710.1126/science.aaf3627 28473537
    [Google Scholar]
  77. AllenR.P. BolandparvazA. MaJ.A. ManickamV.A. LewisJ.S. Latent, immunosuppressive nature of polylactic- co-glycolic acid Microparticles.ACS Biomater. Sci. Eng.20184390091810.1021/acsbiomaterials.7b00831 30555893
    [Google Scholar]
  78. SongP. LeiY. HuX. WangC. WangJ. TangY. Rapid one-step synthesis of carbon-supported platinum-copper nanoparticles with enhanced electrocatalytic activity via microwave-assisted heating.J. Colloid Interface Sci.202057442142910.1016/j.jcis.2020.04.041 32344232
    [Google Scholar]
  79. ZhuJ. MarchantR.E. Design properties of hydrogel tissue-engineering scaffolds.Expert Rev. Med. Devices20118560762610.1586/erd.11.27 22026626
    [Google Scholar]
  80. FlorensaM. LlenasM. Medina-GutiérrezE. SandovalS. Tobías-RossellG. Key parameters for the rational design, synthesis, and functionalization of biocompatible mesoporous silica nanoparticles.Pharmaceutics20221412270310.3390/pharmaceutics14122703 36559195
    [Google Scholar]
  81. FakhriV. SuC.H. Tavakoli DareM. BazmiM. JafariA. PirouzfarV. Harnessing the power of polyol-based polyesters for biomedical innovations: Synthesis, properties, and biodegradation.J. Mater. Chem. B Mater. Biol. Med.202311409597962910.1039/D3TB01186K 37740402
    [Google Scholar]
  82. ThakurA. KumarA. KayaS. MarzoukiR. ZhangF. GuoL. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants.Coatings20221210145910.3390/coatings12101459
    [Google Scholar]
  83. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  84. GuptaD. JamwalD. RanaD. KatochA. Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs.Applications of Nanocomposite Materials in Drug Delivery.Elsevier201861963210.1016/B978‑0‑12‑813741‑3.00027‑3
    [Google Scholar]
  85. HussainM. KhanS.M. Al-KhaledK. AyadiM. AbbasN. ChammamW. Performance analysis of biodegradable materials for orthopedic applications.Mater. Today Commun.20223110316710.1016/j.mtcomm.2022.103167
    [Google Scholar]
  86. ChongW.J. ShenS. LiY. TrinchiA. Pejak SimunecD. KyratzisI.L. SolaA. WenC. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility.Smart. Mat. Manufact.2023110000410.1016/j.smmf.2022.100004
    [Google Scholar]
  87. SridharR. LakshminarayananR. MadhaiyanK. Amutha BarathiV. LimK.H.C. RamakrishnaS. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals.Chem. Soc. Rev.201544379081410.1039/C4CS00226A 25408245
    [Google Scholar]
  88. PinaS. OliveiraJ.M. ReisR.L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review.Adv. Mater.20152771143116910.1002/adma.201403354 25580589
    [Google Scholar]
  89. LiX. SunQ. LiQ. KawazoeN. ChenG. Functional hydrogels with tunable structures and properties for tissue engineering applications.Front Chem.2018649910.3389/fchem.2018.00499 30406081
    [Google Scholar]
  90. FumakiaM. HoE.A. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity.Mol. Pharm.20161372318233110.1021/acs.molpharmaceut.6b00099 27182713
    [Google Scholar]
  91. XingF. MaH. YuP. ZhouY. LuoR. XiangZ. Maria RommensP. DuanX. RitzU. Multifunctional metal-organic frameworks for wound healing and skin regeneration.Mater. Des.202323311225210.1016/j.matdes.2023.112252
    [Google Scholar]
  92. PeraleG. VeglianeseP. RossiF. PevianiM. SantoroM. LlupiD. MicottiE. ForloniG. MasiM. In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine.Mater. Lett.201165111688169210.1016/j.matlet.2011.02.036
    [Google Scholar]
  93. MouX. WuQ. ZhangZ. LiuY. ZhangJ. ZhangC. ChenX. FanK. LiuH. Nanozymes for regenerative medicine.Small Methods2022611220099710.1002/smtd.202200997 36202750
    [Google Scholar]
  94. KarA. AhamadN. DewaniM. AwasthiL. PatilR. BanerjeeR. Wearable and implantable devices for drug delivery: Applications and challenges.Biomaterials202228312143510.1016/j.biomaterials.2022.121435 35227964
    [Google Scholar]
  95. MiaoT. WangJ. ZengY. LiuG. ChenX. Polysaccharide‐based controlled release systems for therapeutics delivery and tissue engineering: from bench to bedside.Adv. Sci.201854170051310.1002/advs.201700513 29721408
    [Google Scholar]
  96. Moradi AlvandZ. RajabiH.R. MirzaeiA. MasoumiaslA. SadatfarajiH. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study.Mater. Sci. Eng. C20199853554410.1016/j.msec.2019.01.010 30813055
    [Google Scholar]
  97. DuFortC.C. PaszekM.J. WeaverV.M. Balancing forces: architectural control of mechanotransduction.Nat. Rev. Mol. Cell Biol.201112530831910.1038/nrm3112 21508987
    [Google Scholar]
  98. LegantW.R. MillerJ.S. BlakelyB.L. CohenD.M. GeninG.M. ChenC.S. Measurement of mechanical tractions exerted by cells in three-dimensional matrices.Nat. Methods201071296997110.1038/nmeth.1531 21076420
    [Google Scholar]
  99. HanY. TangJ. LiuS. ZhaoX. WangR. XiaJ. QinC. ChenH. LinQ. Cellular microenvironment-sensitive drug eluting coating on intraocular lens for enhanced posterior capsular opacification prevention and in vivo biocompatibility.ACS Appl. Bio Mater.2020363582359310.1021/acsabm.0c00331 35025228
    [Google Scholar]
  100. ZhangY. SiH. LiuS. JiangZ. ZhangJ. GongC. Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance.J. Alloys Compd.202185015668010.1016/j.jallcom.2020.156680
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356321729240715094501
Loading
/content/journals/cmic/10.2174/0122133356321729240715094501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test