Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Background

Rhenium (Re) is obtained as a by-product during the extraction of copper and molybdenum ores. In current extractive metallurgy, Re extraction involves a heat treatment that causes Re losses by volatilization and release of toxic gases into the environment.

Objective

This research proposes a novel microwave heat treatment (MWHT) to enhance Re extraction avoiding Re losses and toxic gas release into the environment.

Methods

A novel MWHT and traditional thermal processes used in mining were applied to Cu-Mo concentrates. The elemental composition analysis of the concentrate was performed by atomic spectrometry. The crystalline phase was identified by X-ray diffraction. Particle structure observations were performed with an optical microscopy (OM) and scanning electron microscopy (SEM) with a Field Emission, including semiquantitative analysis (EDS). Thermal behavior and non-isothermal reduction processes were studied using Thermogravimetry Differential Thermal Analysis (TG-DTA).

Results

Re, S and As release decreased 5% during MWHT, compared to 34% of traditional methods. Molybdenite (MoS) and Chalcopyrite (CuFeS) were the crystalline phases in the ore after MWHT. Rhenium was found as an oxide (ReO) and metallic Re. Samples under MWHT showed structural transformations in the mineral particles, with minimal mass losses and high Re and Mo concentrations. The structural transformation of the ore involved microcracks formation.

Conclusion

The MWHT induces a combination of particle degradation mechanisms and lower temperature requirements that prevent Re losses. Lower gas emissions turn this technology into an environmentally friendly one. Crystalline transformation of the Re-chalcopyrite phase enhances Re release during leaching, the next step after MWHT in the hydrometallurgical extraction.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356290503240509092306
2024-09-01
2024-11-22
Loading full text...

Full text loading...

References

  1. McNultyBA JowittSM. Barriers to and uncertainties in understanding and quantifying global critical mineral and element supply.iScience202124710.1016/j.isci.2021.102809
    [Google Scholar]
  2. JohnD.A. Rhenium: a rare metal critical in modern transportation.US Geological Survey20152327693210.3133/fs20143101
    [Google Scholar]
  3. WernerT.T. MuddG.M. JowittS.M. HustonD. Rhenium mineral resources: A global assessment.Resour. Policy20238210344110.1016/j.resourpol.2023.103441
    [Google Scholar]
  4. LeeJ.D. ParkK.K. LeeM-G. KimE-H. RhimK.J. LeeJ.T. YooH.S. KimY.M. ParkK.B. KimJ.R. Radionuclide therapy of skin cancers and Bowen’s disease using a specially designed skin patch.J. Nucl. Med.1997385697702 9170430
    [Google Scholar]
  5. Diksha; Kaur, M.; Megha; Reenu; Kaur, H.; Yempally, V. Rhenium (I) tricarbonyl complex with thiosemicarbazone ligand derived from Indole-2-carboxaldehyde: Synthesis, crystal structure, computational investigations, antimicrobial activity, and molecular docking studies.J. Mol. Struct.2024130113731910.1016/j.molstruc.2023.137319
    [Google Scholar]
  6. HuJ. LiuY. ZhouY. ZhaoH. XuZ. LiH. Recent advances in rhenium-based nanostructures for enhanced electrocatalysis.Appl. Catal. A Gen.202366311930410.1016/j.apcata.2023.119304
    [Google Scholar]
  7. PyczakF. NeumeierS. GökenM. Temperature dependence of element partitioning in rhenium and ruthenium bearing nickel-base superalloys.Mater. Sci. Eng. A201052729-307939794310.1016/j.msea.2010.08.091
    [Google Scholar]
  8. YanL. FanY. HuangJ. LiY. ZhouT. ZuoT. ZhangY. XuG. Occurrence state and enrichment mechanism of rhenium in molybdenite from Merlin Deposit, Australia.Ore Geol. Rev.202316210569310.1016/j.oregeorev.2023.105693
    [Google Scholar]
  9. ZhaoH. HuangF. ZhongS. LiC. FengC. HuZ. The Wuliping ion-adsorption deposit, Guizhou Province, South China: A new type of rhenium (Re) deposit.Ore Geol. Rev.202316010561510.1016/j.oregeorev.2023.105615
    [Google Scholar]
  10. SchulzK.J. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply1st; Geological Survey201710.3133/pp1802
    [Google Scholar]
  11. BarraF. DeditiusA. ReichM. KilburnM.R. GuagliardoP. RobertsM.P. Dissecting the Re-Os molybdenite geochronometer.Sci. Rep.2017711605410.1038/s41598‑017‑16380‑8 29167505
    [Google Scholar]
  12. BazanV. BrandalezeE. SantiniL. SarquisP. Argentinean copper concentrates: structural aspects and thermal behaviour.Int. J. Nonferrous Metall.20132412813510.4236/ijnm.2013.24019
    [Google Scholar]
  13. BrandalezeE. ValentiniM. SantiniL. BenavidezE. Study on fluoride evaporation from casting powders.J. Therm. Anal. Calorim.2018133127127710.1007/s10973‑018‑7227‑6
    [Google Scholar]
  14. FanX. DengQ. GanM. ChenX. Roasting oxidation behaviors of ReS2 and MoS2 in powdery rhenium-bearing, low-grade molybdenum concentrate.Trans. Nonferrous Met. Soc. China201929484084810.1016/S1003‑6326(19)64994‑0
    [Google Scholar]
  15. CuiL. LouF. LiY. HouJ. HeJ.L. JiaZ.T. LiuJ-Q. ZhangB-T. YangK-J. WangZ-W. TaoX-T. Graphene oxide mode-locked Yb:GAGG bulk laser operating in the femtosecond regime.Opt. Mater.20154230931210.1016/j.optmat.2015.01.019
    [Google Scholar]
  16. CheemaH.A. IlyasS. MasudS. MuhsanM.A. MahmoodI. LeeJ. Selective recovery of rhenium from molybdenite flue-dust leach liquor using solvent extraction with TBP.Separ. Purif. Tech.201819111612110.1016/j.seppur.2017.09.021
    [Google Scholar]
  17. LiG. YouZ. SunH. SunR. PengZ. ZhangY. JiangT. Separation of rhenium from lead-rich molybdenite concentrate via hydrochloric acid leaching followed by oxidative roasting.Metals201661128210.3390/met6110282
    [Google Scholar]
  18. ZhangB. LiuH.Z. WangW. GaoZ.G. CaoY.H. Recovery of rhenium from copper leach solutions using ion exchange with weak base resins.Hydrometallurgy2017173505610.1016/j.hydromet.2017.08.002
    [Google Scholar]
  19. SunH. LiG. BuQ. FuZ. LiuH. ZhangX. LuoJ. RaoM. JiangT. Features and mechanisms of self-sintering of molybdenite during oxidative roasting.Trans. Nonferrous Met. Soc. China202232130731810.1016/S1003‑6326(22)65796‑0
    [Google Scholar]
  20. ShenL. TesfayeF. LiX. LindbergD. TaskinenP. Review of rhenium extraction and recycling technologies from primary and secondary resources.Miner. Eng.202116110671910.1016/j.mineng.2020.106719
    [Google Scholar]
  21. LiuB. ZhangB. HanG. WangM. HuangY. SuS. XueY. WangY. Clean separation and purification for strategic metals of molybdenum and rhenium from minerals and waste alloy scraps–A review.Resour. Conserv. Recycling202218110623210.1016/j.resconrec.2022.106232
    [Google Scholar]
  22. KesiemeU. ChrysanthouA. CatulliM. MaterialsH. Assessment of supply interruption of rhenium, recycling, processing sources and technologies.Int. J. Refract. Hard Met.20198215015810.1016/j.ijrmhm.2019.04.006
    [Google Scholar]
  23. JunejaJ.M. SinghS. BoseD.K. Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrate.Hydrometallurgy1996412-320120910.1016/0304‑386X(95)00056‑M
    [Google Scholar]
  24. XiaoC. ZengL. XiaoL. ZhangG. Thermodynamic analysis of Mo(VI)-Fe(III)-S(VI)-H 2 O system for separation of molybdenum and iron.Metall. Res. Technol.2018115110610.1051/metal/2017069
    [Google Scholar]
  25. AzadiM. NortheyS.A. AliS.H. EdrakiM. Transparency on greenhouse gas emissions from mining to enable climate change mitigation.Nat. Geosci.202013210010410.1038/s41561‑020‑0531‑3
    [Google Scholar]
  26. LessardJ.D. GribbinD.G. ShekhterL.N. MaterialsH. Recovery of rhenium from molybdenum and copper concentrates during the Looping Sulfide Oxidation process.Int. J. Refract. Hard Met.2014441610.1016/j.ijrmhm.2014.01.003
    [Google Scholar]
  27. SheybaniK. JavadpourS. MaterialsH. Mechano-thermal reduction of molybdenite (MoS2) in the presence of Sulfur scavenger: New method for production of molybdenum carbide.Int. J. Refract. Hard Met.20209210527710.1016/j.ijrmhm.2020.105277
    [Google Scholar]
  28. RafieiR. JavadpourS. ShariatM.H. Ostovari MoghaddamA. MaterialsH. Effect of processing parameters on the microwave assisted aluminothermic reduction of molybdenite.Int. J. Refract. Hard Met.202210910598410.1016/j.ijrmhm.2022.105984
    [Google Scholar]
  29. JooS.H. KimY.U. KangJ.G. KumarJ.R. YoonH.S. ParhiP.K. ShinS.M. Recovery of rhenium and molybdenum from molybdenite roasting dust leaching solution by ion exchange resins.Mater. Trans.201253112034203710.2320/matertrans.M2012208
    [Google Scholar]
  30. KoleiniS.J. BaraniK. Microwave heating applications in mineral processing, 1st.CroatiaInTec201210.5772/45750
    [Google Scholar]
  31. KingmanS.W. Recent developments in microwave processing of minerals.Int. Mater. Rev.200651111210.1179/174328006X79472
    [Google Scholar]
  32. VorsterW. The effect of microwave radiation on mineral processingPhD dissertation. University of Birmingham2001
    [Google Scholar]
  33. GerasimovA.M. EreminaO.V. Application microwave radiation for directional changes of layered silicates properties.Eurasian Mining20211556010.17580/em.2021.01.11
    [Google Scholar]
  34. ChenT.T. DutrizacJ.E. HaqueK.E. WyslouzilW. KashyapS. The relative transparency of minerals to microwave radiation.Can. Metall. Q.198423334935110.1179/cmq.1984.23.3.349
    [Google Scholar]
  35. HuangJ. XuG. LiangY. HuG. ChangP. Improving coal permeability using microwave heating technology—A review.Fuel202026611702210.1016/j.fuel.2020.117022
    [Google Scholar]
  36. MushtaqF. MatR. AniF.N. Fuel production from microwave assisted pyrolysis of coal with carbon surfaces.Energy Convers. Manage.201611014215310.1016/j.enconman.2015.12.008
    [Google Scholar]
  37. YangP. ShanP. xu, H.; Chen, J.; Li, Z.; Sun, H. Experimental study on mechanical damage characteristics of water-bearing tar-rich coal under microwave radiation.Geomech. Geophys.2023101310.21203/rs.3.rs‑3063964/v1
    [Google Scholar]
  38. LuG. ZhouJ. LiY. ZhangX. GaoW. The influence of minerals on the mechanism of microwave-induced fracturing of rocks.J. Appl. Geophys.202018010412310.1016/j.jappgeo.2020.104123
    [Google Scholar]
  39. BhattacharyaM. BasakT. A review on the susceptor assisted microwave processing of materials.Energy20169730633810.1016/j.energy.2015.11.034
    [Google Scholar]
  40. MarlandS. MerchantA. RowsonN. Dielectric properties of coal.Fuel200180131839184910.1016/S0016‑2361(01)00050‑3
    [Google Scholar]
  41. CuiG. ChenT. FengX. ChenZ. ElsworthD. YuH. ZhengX. PanZ. Coupled multiscale-modeling of microwave-heating-induced fracturing in shales.Int. J. Rock Mech. Min. Sci.202013610452010.1016/j.ijrmms.2020.104520
    [Google Scholar]
  42. PengZ. HwangJ.Y. Microwave-assisted metallurgy.Int. Mater. Rev.2015601306310.1179/1743280414Y.0000000042
    [Google Scholar]
  43. KitchenH.J. VallanceS.R. KennedyJ.L. Tapia-RuizN. CarassitiL. HarrisonA. WhittakerA.G. DrysdaleT.D. KingmanS.W. GregoryD.H. Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing.Chem. Rev.201411421170120610.1021/cr4002353 24261861
    [Google Scholar]
  44. AliA.Y. BradshawS.M. Confined particle bed breakage of microwave treated and untreated ores.Miner. Eng.201124141625163010.1016/j.mineng.2011.08.020
    [Google Scholar]
  45. ToiflM. HartliebP. MeiselsR. AntretterT. KucharF. Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite.Miner. Eng.2017103-104789210.1016/j.mineng.2016.09.011
    [Google Scholar]
  46. KingmanS.W. JacksonK. BradshawS.M. RowsonN.A. GreenwoodR. An investigation into the influence of microwave treatment on mineral ore comminution.Powder Technol.2004146317618410.1016/j.powtec.2004.08.006
    [Google Scholar]
  47. MontiT. TselevA. UdoudoO. IvanovI.N. DoddsC. KingmanS.W. High-resolution dielectric characterization of minerals: A step towards understanding the basic interactions between microwaves and rocks.Int. J. Miner. Process.201615182110.1016/j.minpro.2016.04.003
    [Google Scholar]
  48. ChenG. LiL. TaoC. LiuZ. ChenN. PengJ. Effects of microwave heating on microstructures and structure properties of the manganese ore.J. Alloys Compd.201665751551810.1016/j.jallcom.2015.10.147
    [Google Scholar]
  49. LuG.M. FengX.T. LiY.H. HassaniF. ZhangX. EngineeringR. Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation.Rock Mech. Rock Eng.20195282535254910.1007/s00603‑019‑1743‑y
    [Google Scholar]
  50. ZhengY. MaZ. ZhaoX. HeL. EngineeringR. Experimental investigation on the thermal, mechanical and cracking behaviours of three igneous rocks under microwave treatment.Rock Mech. Rock Eng.20205383657367110.1007/s00603‑020‑02135‑x
    [Google Scholar]
  51. LiQ. LiX. YinT. Effect of microwave heating on fracture behavior of granite: An experimental investigation.Eng. Fract. Mech.202125010775810.1016/j.engfracmech.2021.107758
    [Google Scholar]
  52. AdewuyiS.O. AhmedH.A.M. AhmedH.M.A. Methods of ore pretreatment for comminution energy reduction.Minerals202010542310.3390/min10050423
    [Google Scholar]
  53. ChunpengL. YoushengX. YixinH. Application of microwave radiation to extractive metallurgy.JMST19902121124
    [Google Scholar]
  54. GholamiH. RezaiB. Mehdilo; Hassanzadeh, A.; Yarahmadi, M. Effect of microwave system location on floatability of chalcopyrite and pyrite in a copper ore processing circuit.Physicochem. Probl. Miner. Proces.202056343244810.37190/ppmp/118799
    [Google Scholar]
  55. BrandalezeE. BazánV. OrozcoI. ValentiniM. GomezG. Application of thermal analysis to the rhenium recovery process from copper and molybdenum sulphides minerals.J. Therm. Anal. Calorim.2018133143544110.1007/s10973‑018‑7104‑3
    [Google Scholar]
  56. BaleC.W. ChartrandP. DegterovS.A. ErikssonG. HackK. Ben MahfoudR. MelançonJ. PeltonA.D. PetersenS. FactSage thermochemical software and databases.Calphad200226218922810.1016/S0364‑5916(02)00035‑4
    [Google Scholar]
  57. CabriL.J. New data on phase relations in the Cu-Fe-S system.Econ. Geol.197368444345410.2113/gsecongeo.68.4.443
    [Google Scholar]
  58. AydinyanS. KirakosyanH. NiazyanO. KharatyanS. DTA/TGA study of copper molybdate carbothermal reduction.Chem. J. Armenia2015682196206
    [Google Scholar]
  59. HaberJ. MachejT. UngierL. ZiółkowskiJ. ESCA studies of copper oxides and copper molybdates.J. Solid State Chem.197825320721810.1016/0022‑4596(78)90105‑6
    [Google Scholar]
  60. WangL.Y. DongJ.L. CaiJ.J. Study on mechanism of molybdenum concentrate roasting.Adv. Mat. Res.2012455-456606410.4028/www.scientific.net/AMR.455‑456.60
    [Google Scholar]
  61. KarB.B. Carbothermic reduction of hydro-refining spent catalyst to extract molybdenum.Int. J. Miner. Process.2005753-424925310.1016/j.minpro.2004.08.018
    [Google Scholar]
  62. HorikoshiS. SerponeN. Role of microwaves in heterogeneous catalytic systems.Catal. Sci. Technol.2014451197121010.1039/c3cy00753g
    [Google Scholar]
  63. DrábekM. SteinH. Molybdenite Re-Os dating of Mo-Th-Nb-REE rich marbles: pre-Variscan processes in Moldanubian Variegated Group (Czech Republic).Geol. Carpath.201566317317910.1515/geoca‑2015‑0018
    [Google Scholar]
  64. ZhangM. LiuC. ZhuX. XiongH. ZhangL. GaoJ. LiuM. Preparation of ammonium molybdate by oxidation roasting of molybdenum concentrate: A comparison of microwave roasting and conventional roasting.Chem. Eng. Process.202116710855010.1016/j.cep.2021.108550
    [Google Scholar]
  65. ChenJ. TangD. ZhongS. ZhongW. LiB. The influence of micro-cracks on copper extraction by bioleaching.Hydrometallurgy202019110524310.1016/j.hydromet.2019.105243
    [Google Scholar]
  66. CharikinyaE. BradshawS.M. An experimental study of the effect of microwave treatment on long term bioleaching of coarse, massive zinc sulphide ore particles.Hydrometallurgy201717310611410.1016/j.hydromet.2017.08.001
    [Google Scholar]
  67. LiH. ShiS. LuJ. YeQ. LuY. ZhuX. Pore structure and multifractal analysis of coal subjected to microwave heating.Powder Technol.20193469710810.1016/j.powtec.2019.02.009
    [Google Scholar]
  68. YangK. LiS. ZhangL. PengJ. ChenW. XieF. MaA. Microwave roasting and leaching of an oxide-sulphide zinc ore.Hydrometallurgy201616624325110.1016/j.hydromet.2016.07.012
    [Google Scholar]
  69. WalkiewiczJ. KazonichG. McGillS. processing m. Microwave heating characteristics of selected minerals and compounds.Min. Metall. Explor.19885394210.1007/BF03449501
    [Google Scholar]
  70. LovásM. ZnamenáčkováI. ZubrikA. KováčováM. DolinskáS. The application of microwave energy in mineral processing–a review.Acta Montan. Slovaca2011162137
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356290503240509092306
Loading
/content/journals/cmic/10.2174/0122133356290503240509092306
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): coal mining; Copper ores; microwave heat treatment; molybdenum ores; OM; rhenium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test