Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
141 - 160 of 210 results
-
-
Advancements in CDK-based Dual-target Inhibitors for Cancer Therapy
Authors: Bao-Kai Dou, Hai-Wen Zhang and Ying-Jie CuiAvailable online: 23 June 2025More LessBackgroundThe cyclin-dependent kinases (CDKs) play a crucial role in the normal progression of these stages. In tumor cells, CDKs are often highly expressed, leading to uncontrolled cell proliferation. Inhibiting the activity of CDKs in tumor cells can inhibit their growth and proliferation, thereby achieving anti-tumor effects. In recent years, many CDKs inhibitors have been developed, but due to side effects and drug resistance issues, only a few CDKs inhibitors have been approved by the FDA.
MethodsPublications on CDK-based dual-target inhibitors were reviewed using SciFinder and PubMed, excluding reviews, patents, and studies with irrelevant content.
ResultsThe study outlines advancements in CDK-based dual-target inhibitors as antitumor agents, offering insights to support the development and application of more effective cancer therapies.
ConclusionDual-targeted anti-tumor drugs may have better therapeutic effects than single-targeted drugs, which may address drug resistance issues and overcome drug interactions and pharmacokinetic issues associated with combination therapy. As an important direction in cancer treatment, dual target inhibitors have broad development prospects. By continuing to explore and improve dual target therapies, it has potential to overcome many limitations of single target therapy and provide more effective and lasting treatment outcomes for cancer patients.
-
-
-
Molecular Subtypes of Mixed Gastric Cancer Defined by Machine Learning for Predicting Prognosis and Treatment Response
Authors: Minchao Rao, Ruiwen Ruan, Jianping Xiong and Jun DengAvailable online: 23 June 2025More LessBackgroundGastric cancer (GC) is traditionally classified into intestinal (IGC), diffuse (DGC), and mixed (MGC) types based on pathological features, with each subtype exhibiting distinct clinical outcomes. Among these, DGC is associated with poor prognosis, characterized by low cell adhesion and a high stromal component. Recent proteomic studies have revealed significant differences in extracellular matrix (ECM) composition between DGC and IGC, highlighting the critical role of ECM in tumor biology. MGC, which combines both intestinal and diffuse characteristics, presents substantial heterogeneity, complicating prognosis and personalized treatment approaches. This study reclassifies MGC using extracellular matrix receptor (ECMR) and cell adhesion (CA)-related genes (ECRGs), closely linked to the biological behavior of DGC, to provide insights into prognosis and treatment response.
MethodsRNA sequencing data and clinical information from GC patients were collected from the TCGA and GEO databases, excluding cases of pure IGC and DGC. Based on ECMR and CA-related genes, supervised clustering via non-negative Matrix Factorization (NMF) was used to identify molecular subtypes in MGC. Differential expression and Cox regression analyses were performed to identify prognostic genes, and an ECMR and CA-based gene signature (ECRS) was developed using machine learning techniques. Gene Set Variation Analysis (GSVA) was conducted to assess functional differences between risk groups, while TIDE and pRRophetic analyses were used to predict responses to immunotherapy and chemotherapy.
ResultsA total of 239 MGC patients were classified into two molecular subtypes with significant differences in prognosis. Subtype 2 displayed distinct ECM interactions and connective tissue development pathways. To refine the ECRS model, we tested 117 model combinations across 10 machine learning algorithms, selecting the configuration with the best predictive accuracy. This optimized model distinguished biological and immune characteristics between high- and low-risk groups, with low-risk patients showing greater sensitivity to immunotherapy and standard chemotherapy.
ConclusionThis study identifies novel molecular subtypes of MGC based on ECMR and CA-related genes and establishes an effective ECRS model to predict prognosis, immunotherapy response, and chemotherapy sensitivity. This model supports personalized treatment strategies for MGC.
-
-
-
Research Progress of Wound Dressing Based on Sodium Alginate Composite Hydrogel
Authors: Fengchao Zhou, Shibin Deng, Guorong Lin, Jiandong Shen and Dianping TangAvailable online: 20 June 2025More LessHydrogel wound dressing has significant advantages in wound treatment. It can shorten the time of wound healing, control the process of wound healing, and effectively promote the healing of damaged tissues in a hydrated environment. Sodium alginate (SA) is a commonly used hydrogel wound dressing material, which can quickly form a three-dimensional network structure hydrogel in a relatively mild environment, but the mechanical properties and stability of a single SA hydrogel are poor. The composite hydrogel prepared by mixing SA with other substances can not only exert the performance of a single substance but also improve the mechanical properties, stability and adsorption of the hydrogel and has a wider application prospect in the field of sustained release control of bioactive substances. Natural polymers have been widely used in the preparation of hemostatic and wound healing materials due to their excellent biocompatibility, degradability, viscoelasticity and easy processing. This paper introduces the research progress of composite hydrogels prepared by SA and natural polymers in mechanical properties, antibacterial, anti-inflammatory, tissue repair and sustained release control of bioactive substances, and provides a theoretical basis for the application of SA-based composite hydrogels in wound dressings.
-
-
-
Exploring the Role of DPF1 in Hepatocellular Carcinoma: Implications for Prognosis and Therapy
Authors: Fan Yang, Yinyi Li, Dan Chen, Xiuju Wang, Mei Sun, Dongbing Li and Niansong QianAvailable online: 20 June 2025More LessBackgroundHepatocellular carcinoma (HCC) is a life-threatening cancer with rising incidence and mortality rates. Identifying new prognostic biomarkers is crucial for improving HCC management.
ObjectivesThis study investigates the role of Double PHD Fingers 1 (DPF1) in hepatocellular carcinoma (HCC), exploring its potential as a prognostic indicator and therapeutic target.
MethodsWe analyzed DPF1 expression in 374 hepatocellular carcinoma (HCC) tissues and 50 normal tissues from the TCGA-HCC database, as well as in 240 HCC tissues and 202 normal tissues from the ICGC-HCC repository. We examined the correlation between DPF1 expression and clinical parameters, immune cell infiltration, drug response profiles, cancer stem cell (CSC) characteristics, and its diagnostic/prognostic potential using various bioinformatics tools and statistical analyses. Validation was performed using the ICGC and HPA databases, and qRT-PCR was used to confirm DPF1 expression in HCC cell lines.
ResultsDPF1 exhibited abnormal expression in HCC and several other malignancies. Elevated DPF1 levels were significantly associated with higher Alpha-fetoprotein (AFP) levels (p = 0.043) and poorer clinical outcomes, including diminished overall survival (OS) (p = 0.002), progression-free survival (PFS) (p = 0.018), and disease-specific survival (DSS) (p = 0.001). DPF1 expression was also linked to immune cell infiltration, immune checkpoint gene expression, drug sensitivity, and CSC characteristics. Notably, DPF1 was significantly overexpressed in HCC tissues and cell lines at both transcriptional and translational levels.
ConclusionOur study reveals that DPF1 is a novel prognostic biomarker in HCC, with potential implications for immunotherapy and drug resistance. Elevated DPF1 expression is associated with adverse clinical outcomes and may serve as a target for future therapeutic interventions in HCC.
-
-
-
Identify Key Genes and Construct the lncRNA-miRNA-mRNA Regulatory Networks Associated with Glioblastoma by Bioinformatics Analysis
Authors: Dong Xingli, Ilgiz Gareev, Sergey Roumiantsev, Ozal Beylerli, Valentin Pavlov, Shiguang Zhao and Jianing WuAvailable online: 20 June 2025More LessIntroductionGlioblastoma is the most common and aggressive brain tumor, with low survival rates and high recurrence rates. Therefore, it is crucial to understand the precise molecular mechanisms involved in the oncogenesis of glioblastoma.
Materials and MethodsTo investigate the regulatory mechanisms of long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (miRNA) network related to glioblastoma, in the present study, a comprehensive analysis of the genomic landscape between glioblastoma and normal brain tissues from the Gene Expression Omnibus (GEO) dataset was first conducted to identify differentially expressed genes (DEGs) in glioblastoma. Following a series of analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, protein-protein interaction (PPI), and key model analyses. In addition, we used the L1000CDS2 database bioinformatic tool to identify candidates for therapy based on glioblastoma specific genetic profile.
ResultsIn our results, 100 key genes, 50 upregulated and 50 downregulated, were ultimately identified. The results of KEGG pathway enrichment gene analysis showed that the five regulatory pathways. Furthermore, 3 small molecule signatures (trichostatin A, TG-101348, and vorinostat) were recommended as the top-ranked candidate therapeutic agents. Nevertheless, the constructed miRNA-mRNA network revealed a convergence on 40 miRNAs. We found that dysregulation of lncRNAs such as KCNQ1OT1 and RP11-13N13.5 could sequester several miRNAs such as hsa-miR-27a-3p, hsa-miR-27b-3p, hsa-miR-106a-5p, etc., and promote the development and progression of glioblastoma.
ConclusionOur study identified key genes and related lncRNA-miRNA-mRNA network that contribute to the oncogenesis of glioblastoma.
-
-
-
A Prognostic Lysine Crotonylation Signature Shapes the Immune Microenvironment in Hepatocellular Carcinoma
Authors: Weiping Su, Kuo Kang, Xuanxuan Li and Heyuan HuangAvailable online: 13 June 2025More LessIntroductionHepatocellular carcinoma (HCC) has a poor prognosis due to late diagnosis and rapid progression, highlighting the need for a deeper understanding of its pathogenesis. Lysine crotonylation (Kcr), a unique post-translational modification, plays a crucial role in epigenetic regulation. However, the role of crotonylation-related genes (CRGs) in HCC remains poorly understood, necessitating an investigation of their prognostic and therapeutic relevance.
MethodsTranscriptomic and clinical data were obtained from TCGA and GEO databases. A CRG-based risk score was developed using Cox and LASSO regression analyses. To enhance survival prediction, a nomogram incorporating the risk score was constructed. Immune cell infiltration and drug sensitivity were assessed using CIBERSORT and 'OncoPredict.' Single-cell sequencing was employed to examine CRG expression within the HCC tumor microenvironment.
ResultsAn 8-gene risk score model (HDAC2, ACADS, HDAC1, ENO1, PPARG, ACADL, ACSL6, and AGPAT5) was established, effectively stratifying patients into high- and low-risk groups in the training set. Cox regression and Kaplan-Meier analyses validated its prognostic value in the test set. The nomogram demonstrated enhanced prognostic accuracy for survival prediction. Differences in immune cell infiltration and immune checkpoint expression between risk groups highlighted the association between CRGs and the tumor immune microenvironment. Single-cell sequencing revealed that CRGs were highly expressed in key immune cells within the HCC microenvironment. Additionally, drug sensitivity analysis suggested that specific targeted therapies may be more effective in HCC patients.
DiscussionCrotonylation-related gene signature demonstrates strong prognostic value in hepatocellular carcinoma (HCC), effectively stratifying patients into high- and low-risk groups and recapitulating known oncogenic roles of HDAC1/2, ENO1, PPARG, AGPAT5 and the protective functions of ACADS, ACADL, and ACSL6. It was found that crotonylation not only influences tumor cell metabolism and epigenetic regulation but also shapes the immune microenvironment, highlighted by distinct checkpoint expression, differential immune cell infiltration, and drug sensitivity profiles, which position our model as a promising tool for personalized therapeutic decision-making. However, clinical translation will require standardized, reproducible assays for crotonylation measurement and rigorous validation across diverse HCC etiologies (e.g., viral vs. non-viral), along with mechanistic and longitudinal studies to dissect causality versus correlation, assess off- target effects of crotonylation modulators, and confirm functional impacts on immune modulation before routine diagnostic or therapeutic use.
ConclusionThis study identifies a prognostic CRG signature for HCC and provides novel insights into personalized treatment strategies.
-
-
-
Synthesis and Antiproliferative Activity against Melanoma Cells of New Heterocyclic Hybrids Based on Pyridine and Pyrimidine Scaffolds
Available online: 10 June 2025More LessBackgroundOver 85% of biologically active compounds are heterocycles or contain heterocyclic groups, underscoring their vital importance in contemporary drug development. Among them, nitrogen-containing derivatives, such as pyridines and pyrimidines, are considered privileged structures in approved drugs or are extensively studied due to their promising therapeutic effects.
ObjectiveIn the current work, we would like to verify the hypothesis that incorporating heterocyclic pharmacophores into derivatives of pyrimidine-2(1H)-thione (PMT), 2-pyridone (P), pyridine-2(1H)-thione (PT), dihydropyrimidine-2(1H)-thione (DHPMT), dihydropyridin-2(1H)-one (DHP), and dihydropyridine-2(1H)-thione (DHPT) rings enhances antitumor activity.
MethodsA range of novel pyridine- and pyrimidine-based compounds were synthesized and assessed for their anticancer properties against the melanoma A375 cell line. The two most potent compounds (16b and 29) were then chosen for further evaluation of their effects on non-cancerous human dermal fibroblasts, cancer cell apoptosis, cell cycle phase distribution, and tubulin polymerization. Furthermore, in silico analyses were performed to assess the pharmacokinetics, toxicity, drug-likeness, and molecular target of the selected compounds.
ResultsAmong the 33 compounds tested, pyridine analogs 16b and 29 demonstrated the strongest antiproliferative activity (with IC50 values of 1.85 ± 0.44 µM and 4.85 ± 1.67 µM, respectively) and selectivity (SI=65.08 and SI> 100, respectively) against cancer cells. Additional studies revealed that compound 16b, which features a thiophene ring at the C-5 position and a 3,4,5-trimethoxyphenyl (TMP) group, showed the most promising cell cycle arrest and tubulin polymerization inhibition (IC50=37.26 ± 10.86 µM), resulting in cancer cell apoptosis. In silico ADMET analysis confirmed the drug- likeness of the synthesized compounds.
ConclusionThis research reinforced the significance of heterocyclic rings as valuable pharmacophores. Additionally, it highlighted the antiproliferative and antimitotic potential of modified pyridine derivatives.
-
-
-
Recent Advances in FLT3-Based Dual Inhibitors: A Promising Strategy for the Treatment of Acute Myeloid Leukemia
Authors: Haibin Yuan, Jinxin Che and Tao LiuAvailable online: 03 June 2025More LessAcute Myeloid Leukemia (AML) is a hematological malignancy known for its aggressive nature, resistance to therapies, and high relapse rates. Approximately one-third of AML cases involve mutations in the FLT3 gene, making it a pivotal target for treatment strategies. Early FLT3 inhibitors demonstrated efficacy initially, yet subsequent issues with drug resistance and disease recurrence underscored the multifaceted challenges of AML management. Immunotherapy and combination therapies are effective strategies to overcome resistance, but there are limitations, such as toxic side effects. In contrast, FLT3 dual-target inhibitors exhibit excellent anti-tumor effects, while being safer and more controllable. Several of these inhibitors have progressed to clinical trials, underscoring their potential in advancing therapeutic options for AML. This review explores the synergistic potential of targeting FLT3 kinase in conjunction with other anti-cancer mechanisms and provides an overview of recent advancements in FLT3 dual-target inhibitors over the past decade.
-
-
-
A Genetic Perspective to Reveal the Impact of Mitochondrial Dysfunction-related Genes on Diabetic Kidney Disease: A Multi-omics Study
Authors: Yan Zhang, Zeyuan Wang, Jin Shang, Yijun Dong and Zhanzheng ZhaoAvailable online: 03 June 2025More LessObjectiveThis study investigated the causes of Mitochondrial Dysfunction (MD) in Diabetic Kidney Disease (DKD) progression, and identified genes associated with DKD, especially those with significant genetic causal effects, to provide a theoretical basis for DKD treatment.
MethodsUsing a large database and single-cell RNA sequencing (scRNA-seq) data, 333 MDRDEGs were discovered. MDRDEGs were linked to AGE-RAGE signaling, RNA processing, protein transport, and energy metabolism using functional enrichment analysis. Seven MDRDEGs with significant genetic causal effects in DKD were discovered using SMR and MR analyses: ACTN1, ALG11, CCNB1, HIVEP2, MANBA, TUBA1A, and WFS1. Co-localization and scRNA-seq analyses examined these genes' DKD connections. Due to the high significance of its prediction model and DKD expression, ACTN1 was studied in depth. PheWAS and molecular dynamics analysis assessed ACTN1's safety and efficacy as a therapeutic target, and its connection with other symptoms. ACTN1 protein expression in DKD tissues was confirmed by immunofluorescence.
ResultsFunctional enrichment analysis revealed that MDRDEGs were mostly related to AGE-RAGE signaling, RNA processing, protein transport, and energy metabolism. Seven MDRDEGs caused DKD genetically in SMR and MR investigations. Genetic variations in ACTN1, ALG11, MANBA, and TUBA1A were linked to DKD by co-localization studies. scRNA-seq showed a dramatic increase in ACTN1 expression in DKD. Molecular dynamics analysis demonstrated that Dihydroergocristine can safely bind to ACTN1, while the PheWAS investigation found no significant relationships. DKD tissues exhibited higher ACTN1 protein levels via immunofluorescence.
DiscussionThis study identified MDRDEGs linked to inflammation, cytoskeletal stabilization, and glucose metabolism pathways critical in Diabetic Kidney Disease (DKD) pathogenesis, highlighting their clinical potential as therapeutic targets. Notably, ACTN1 emerged as a causally linked gene overexpressed in DKD, with the prediction of dihydroergocristine as a targeting compound, offering novel avenues for clinical intervention.
ConclusionThis study suggests that ACTN1 may be a therapeutic target for DKD and sheds light on its molecular pathogenesis, clinical prevention, and treatment.
-
-
-
MDMA-Assisted Treatment for PTSD, Anxiety, and Depression: A Visualized Literature Analysis over 30 Years
Authors: Jinlong Zhang, Xingxing Dang, Jiang Lin, Qianqian Chen, Binbin Wang and Jie YanAvailable online: 02 June 2025More LessBackgroundThe incidence of psychiatric disorders, such as post-traumatic stress disorder (PTSD), anxiety, and depression, has been steadily increasing, while current treatment approaches remain limited in efficacy. As a result, there is an urgent need to explore more effective therapeutic interventions. In recent years, MDMA (3,4-methylenedioxymethamphetamine)-assisted therapy (MDMA-AT) has emerged as a promising and innovative approach, demonstrating favorable clinical potential in the treatment of these disorders. Although preliminary studies have confirmed its therapeutic efficacy, a comprehensive and systematic analysis of the research trends and current limitations of MDMA-AT remains lacking.
MethodsThis study employed a bibliometric approach to systematically retrieve and analyze research literature published between 1994 and 2023 on the application of MDMA in the treatment of PTSD, anxiety, and depression. Relevant data were obtained from three prominent databases: Web of Science Core Collection, PubMed, and Scopus. VOSviewer and Microsoft Excel were used to perform visual and quantitative analyses, focusing on publication trends, research hotspots, prolific authors, leading institutions, and international collaboration networks.
ResultsThe findings indicated a substantial increase in MDMA-related research over the past decade. The United States has led the field in publication output, with the Multidisciplinary Association for Psychedelic Studies (MAPS) identified as the most productive institution. Key figures, such as Rick Doblin, have demonstrated high influence and centrality within the global research network. The research focus has gradually shifted from investigations of the neurotoxic properties of MDMA to explorations of its therapeutic mechanisms, safety profiles, and clinical applications.
ConclusionThis study provides a comprehensive synthesis of the past thirty years of research on MDMA-AT in the treatment of PTSD, anxiety, and depression, identifying major research trajectories and critical challenges in the field. While current findings highlight the therapeutic promise of MDMA and its translational potential, further research is needed to improve trial design, enhance sample diversity, and evaluate long-term effects in order to support the standardization and evidence-based integration of MDMA-assisted therapy into clinical practice.
-
-
-
The Role of CDKs in the Regulation of the Monocyte/Macrophage Immune Response
Authors: Alexander N. Neznamov, Yulia P. Baykova and Marina V. KubekinaAvailable online: 29 May 2025More LessMonocytes/macrophages play an important role in controlling the onset and progression of inflammatory responses by changing their activation state. Inflammation accompanies some slowly progressing pathologies, such as neurodegenerative diseases, rheumatoid arthritis, atherosclerosis, and other inflammatory disorders. Monocyte/macrophage differentiation and polarization are accompanied by transcriptional profile changes. A better understanding of the specific ligands and receptors involved in the regulation of immune cell transcription will help to identify selective molecular targets for the therapy of inflammatory diseases. CDKs are key regulators of cell cycle and transcription in eukaryotes. Thus, this review is aimed to examine the role of CDKs in the monocyte-macrophage response and the data obtained from relevant experiments. M1 macrophages can trigger harmful inflammatory responses. A potential solution is to shift the polarization of macrophages towards the protective anti-inflammatory M2 phenotype (macrophage reprogramming). The mechanisms regulating this switch are crucial for the proper functioning of monocytes and macrophages. Inhibition of different types of CDKs leads to changes in the functional activity of monocytes/macrophages. It has been shown that monocytes/macrophage differentiation and immune functions are dependent on CDK activity. Recent studies on CDKs and their role in the immune system have concluded that their activity plays an essential role in monocyte/macrophage differentiation and immune functions. However, the role of CDKs in monocytes, macrophages, and the immune response is not fully understood. Unraveling the role of transcriptional regulators could provide valuable insights for the development of new treatments for macrophage-mediated inflammatory diseases.
-
-
-
Capsid Assembly Modulators: A Promising Curative Regimen for Chronic Hepatitis B
Authors: Chunhua Ma, Xiaoyan Zhang, Junbiao Chang and Bin YuAvailable online: 23 May 2025More Less
-
-
-
Betanin, a Natural Product from Red Beets, Improves Endothelial Dysfunction through Activation of Autophagy
Authors: Junpei Li, Luyan Xu, Duoduo Zha, Yixiong Zhan, Yijia Wu, Xianxian Mao, Li Zuo, Xinyan Bai, Linsiqi Wang, Kunhua Chen, Jinghua Luo and Yisong QianAvailable online: 22 May 2025More LessObjectiveEndothelial dysfunction is the altered pathological ability of endothelial cells to modulate the passage of cells and solutes across vessels, which underlies the development of inflammatory diseases. Betanin (betanidin-5-O-β-glucoside), a natural product rich in red beets, is a water-soluble nitrogen-containing pigment, and its potential protective effects on cardiovascular disease have been reported. In this study, we investigated the protective role of betanin in vascular endothelial dysfunction induced by TNFα and explored potential mechanisms.
MethodsWe modelled endothelial dysfunction through TNFα stimulation in human umbilical vein endothelial cells (HUVECs) and examined the role of betanin and its possible mechanism of action by MTT assay, Western blotting, and immunofluorescence staining. A systemic inflammation model of mice was built through LPS to investigate the protective roles of betanin.
ResultsBetanin pre-treatment increased cell viability, inhibited the expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and improved endothelial tight junction by upregulating the expression of occludin and zonula occludens-1 (ZO-1) after TNFα stimulation in HUVECs. In terms of endothelial-mesenchymal transition, betanin up-regulated the expression of endothelial phenotypes VE-cadherin and CD31, whereas it inhibited the expression of mesenchymal phenotype N-cadherin, indicating that betanin reduced endothelial-mesenchymal transition in TNFα-stimulated HUVECs. In addition, betanin increased the expression of LC3 and decreased the expression of p62, two central proteins in autophagy. Betanin also reversed the abnormal autophagic flux after TNFα exposure. However, the specific autophagy inhibitor, 3-methyladenine, blocked the protective effect of betanin. Finally, betanin was found to greatly decrease ICAM-1 and VCAM-1 expression, and upregulate occludin and ZO-1 levels in a systemic inflammation model of mice.
ConclusionThe above results collectively suggested that betanin may improve endothelial dysfunction by promoting autophagy, thus exerting beneficial effects on cardiovascular health.
-
-
-
Exploring New Frontiers in Pharmacological Treatment of Depression: A Review on Recent Advances
Authors: Muthukumaran Thulasingam and Chitra VellapandianAvailable online: 22 May 2025More LessThe current treatment strategy is still subpar, especially for severe mental problems, despite tremendous progress in the understanding of the central nervous system. Improving healthcare usually entails two main approaches: investigating new treatment approaches and improving current ones. New pharmacological options include enhanced monoaminergic pharmaceuticals, old treatments reassessed with a better knowledge of the biology of mental disease, and medications that target new therapeutic pathways. One major clinical challenge in the treatment of depression is resistance to antidepressant drugs. It appears promising to switch to monotherapy using new multifunctional antidepressants and add new atypical antipsychotics, such as brexpiprazole and aripiprazole. Current efforts are concentrated on unraveling depression's origins and pinpointing fresh targets for pharmacological intervention. This review explores encouraging novel pharmacological avenues for major depressive disorder treatment. These include targeting receptors, such as N-methyl-D-aspartate and metabotropic glutamate receptors, and employing glutamatergic modulators and various augmentation strategies, all of which hold the potential for reversal of depressant effects. Combining innovative concepts with enhancements of existing discoveries may propel antidepressant research forward, offering hope for developing compounds that are effective and rapid in their action, even among patients who have found limited success with other therapies.
-
-
-
Relationship between 21 Medications and Negative Emotions: A Mendelian Randomization Analysis in Asian Populations
Authors: Xiaotong Wang, Yuhan Wei, Xi Nie, Yuchuan Zhang, Lan Yang, Weiting Zeng, Kexin Shi and Haixiong LinAvailable online: 19 May 2025More LessObjectiveNegative emotional states, such as nervousness, anxiety, depression, and tension, exert profound detrimental effects on an individual's quality of life and overall health. Although certain widely prescribed medications have been observed to modulate these emotional states, the existing body of research in this domain remains insufficient. To address this gap, Mendelian randomization (MR) methodologies, leveraging large-scale datasets, were employed to investigate the causal relationships between 21 commonly utilized medications and the manifestation of negative emotions.
MethodsThe inverse variance weighting (IVW) method was employed as the primary analytical strategy to analyze causal relationships. MR-Egger, weighted mode, and weighted median approaches were utilized to enhance the robustness of the results. Sensitivity analyses were conducted to assess the stability of the data.
ResultsAgents acting on the renin-angiotensin system, β-blocking agents, antithrombotic agents, and salicylic acid and derivatives could reduce the risk of nervousness, anxiety, tension, or depression (OR = 0.61, 95% CI 0.37 to 0.99, p = 0.047; OR = 0.59, 95% CI 0.36 to 0.98, p = 0.041; OR = 0.55, 95% CI 0.34 to 0.88, p = 0.013; OR = 0.61, 95% CI 0.40 to 0.95, p = 0.030), with no heterogeneity, horizontal pleiotropy, or reverse causation (p > 0.05).
ConclusionThis study revealed four medications associated with reducing the risk of negative emotions, providing clinicians with a scientific basis for medication selection to better assist patients in alleviating psychological issues and improving their quality of life.
-
-
-
Emerging New Treatments for Colon Cancer
Authors: Sheu Ibrahim Adedayo and Eva Sonnenberg-RiethmacherAvailable online: 16 May 2025More LessColorectal cancer includes cancer of the rectum and colon. It is the primary cause of cancer-related deaths among men under 50 years of age. In 2022, over 1.9 million cases of CRC were reported, resulting in approximately 904,000 deaths worldwide. Factors like smoking, alcohol consumption, obesity, familial history, and inflammation significantly contribute to the risk of CRC development. Additionally, bacterial infections from organisms like Bacteroides fragilis, Fusobacterium nucleatum, and Helicobacter pylori also play a role in increasing this risk. Conventional treatment methods for CRC typically involve surgery/polypectomy, chemotherapy, and radiotherapy. Because of limitations like lack of target specificity, the risk of tumor relapse, and the potential for tumor resistance, there is a growing necessity for more individually tailored treatment strategies to improve the outcomes of patients with CRC. As such, emerging treatments like cancer vaccine, (CAR) T-cells, CAR-NK cells, macrophages, and stem cell engineering (particularly mesenchymal stem cells), dendritic vaccine, siRNA, and miRNA, hold significant promise in enhancing outcomes for CRC patients. Moreover, specific gut microbiomes like Bacteroides fragilis, Streptococcus gallolyticus, Enterococcus faecalis, and Escherichia coli, linked to CRC development, have been identified. Hence, modulating the gut microbiome to potentially enhance responses to CRC in high-risk populations could be a new line of treatment. This modulation can be accomplished through dietary interventions, prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). This review summarizes the most promising new emerging treatments in the fight against colon cancer.
-
-
-
A Neuroendocrine Differentiation-related Molecular Model for Prognosis Prediction in Prostate Cancer Patients
Authors: Yong Wei, Jiang-Bo Sun, Qian-Ren-Shun Qiu, Yu-Xuan Zhao, Qing-Shui Zheng, Xiong-Lin Sun, Ning Xu and Xue-Yi XueAvailable online: 15 May 2025More LessPurposeThe purpose of this study is to construct and validate a neuroendocrine differentiation-related molecular model for predicting prognosis in patients with prostate cancer (PCa).
Materials and MethodsTranscriptome data for PCa were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) websites. Differentially expressed neuroendocrine differentiation related genes (NDGs) were identified. By utilizing multivariate Cox analysis, a neuroendocrine differentiation-related molecular model for predicting prognosis was constructed and validated. The study investigated the novel model’s association with the tumor immune microenvironment, clinicopathological characteristics, tumor stemness, and anticancer treatment sensitivity. Additionally, preliminary experimental verifications of Diencephalon / Mesencephalon Homeobox 1 (DMBX1) were conducted.
ResultsFinally, we identified a total of 19 differentially expressed NDGs. A neuroendocrine differentiation-related molecular model was established and successfully validated both internally and externally. The high-risk group exhibited significantly poorer biochemical recurrence-free survival (BCRFS) in the training, testing, and validating cohorts. The areas under the receiver operating characteristic curves for the training, testing, and validating cohorts were 0.825, 0.719, and 0.729, respectively. The tumor immune microenvironment, clinicopathological features, tumor stemness, and anti-cancer drug sensitivity was significantly different between high and low-risk patients. Preliminary experiments revealed that higher expression of DMBX1 significantly enhanced the proliferation, migration, and neuroendocrine differentiation of PCa cells.
ConclusionThis research developed a unique neuroendocrine differentiation-related molecular model that is highly suitable for predicting BCRFS. High DMBX1 expression may promote the development and neuroendocrine differentiation of prostate cancer.
-
-
-
Binding Specificity and Local Frustration in Structure-based Drug Discovery
Authors: Zhiqiang Yan, Yuqing Li, Ying Cao, Xuetao Tao, Jin Wang and Yongsheng JiangAvailable online: 12 May 2025More LessEvolution has optimized proteins to balance stability and function by reducing unfavorable energy states, leading to regions of flexibility and frustration on protein surfaces. These locally frustrated regions correspond to functionally important areas, such as active sites and regions for ligand binding and conformational plasticity. Typical strategies of structure-based drug discovery primarily concentrate on enhancing the binding affinity during compound screening and target identification. However, this often overlooks the binding specificity, which is critical for distinguishing specific binding partners from competing ones and avoiding off-target effects. According to the energy landscape theory, optimization of the intrinsic binding specificity involves globally minimizing the frustrations existing in the biomolecular interactions. Recent studies have demonstrated that identifying local frustrations provides a promising approach for screening more specific compounds binding with targets, and quantifying binding specificity complements typical strategies that focus on binding affinity only. This review explores the principles and strategies of computationally quantifying the binding specificity and local frustrations and discusses their applications in structure-based drug discovery. Moreover, given the advancements of artificial intelligence in protein science, this review aims to motivate the integration of AI and available approaches in quantifying the binding specificity and local frustration. We expect that an AI-powered prediction model will accelerate the drug discovery process and improve the success rate of hit compounds.
-
-
-
Icaritin Attenuates HSC Activation by Down-regulating the HIF-1α and TGF-β/Smad Signaling Pathways to Ameliorate Liver Fibrosis
Authors: Keping Feng, Qiaoman Fei, Na Huang, Ke Du, Chengbo Zhang, Yudan Fan, Ying Zhou, Yaping Zhao, Pengfei Liu and Zongfang LiAvailable online: 05 May 2025More LessIntroductionIcaritin is a bioactive flavonol isolated from the Chinese medicinal herb Epimedium. The comprehensive understanding of antifibrotic effects and associated molecular mechanisms of icaritin remains incomplete. This study aims to explore the protective effects of icaritin against liver fibrosis and to further elucidate the mechanisms involved.
MethodsHuman hepatic stellate LX-2 cells stimulated with TGF-β1 and a carbon tetrachloride (CCl4)-induced liver fibrosis mouse model were employed. In vitro assays were carried out to evaluate collagen type I (COL I) and α-smooth muscle actin (α-SMA) expression, while in vivo studies assessed fibrosis alleviation. Molecular mechanisms were explored via analysis of TGF-β1, phosphorylated Smad2/3, and HIF-1α protein levels using Western blotting.
ResultsIcaritin suppressed TGF-β1-induced COL I and α-SMA expression in LX-2 cells and ameliorated liver fibrosis in CCl4-treated mice. Mechanistically, it significantly reduced TGF-β1 levels, inhibited Smad2/3 phosphorylation, and downregulated HIF-1α protein expression in LX-2 cells.
ConclusionIcaritin attenuated experimental liver fibrosis through the inhibition of the TGF-β/Smad and HIF-1α signaling pathways, highlighting its therapeutic potential for fibrotic liver diseases.
-
-
-
Genetic Studies on Multiple Consanguineous Families Segregating Diverse Phenotypes of Microphthalmia Identified Novel and Recurrent Mutations
Available online: 05 May 2025More LessIntroductionAnophthalmia/microphthalmia (A/M) and anterior segment dysgenesis (ASD) are severe ocular anomalies impacting eye morphology, occurring in 30 per 100,000 live births. Genetic research has identified over 30 genes linked to A/M anomalies, with their products mainly involved in eye organogenesis.
Aims and ObjectivesThis study examined two consanguineous A/M families to identify disease-associated pathogenic mutations and predict their functional impact.
MethodologyPatients were clinically examined using A-scan and ophthalmic ultrasonography. Whole exome sequencing (WES) identified candidate pathogenic variants validated through Sanger sequencing. Computational analyses assessed the impact of these mutations on protein structure and function.
ResultsThe clinical diagnosis of family A revealed microphthalmia with ASD, while family B presented with an A/M phenotype. Exome analysis of family A identified a novel missense variant, NM_012293:c.A3742G [p.(Arg1248Gly)], in the peroxidasin (PXDN) gene (ClinVar ID: VCV001333267.1). At the cellular level, PXDN is involved in establishing sulfilimine bonds in collagen IV, a component of the basement membrane, suggesting that ocular defects may result from impaired integrity of the basement membrane in the developing eye. In contrast, Family B exhibited a nonsense variant NM _012186:c.720C>A (p.Cys240*) in the FOXE3 gene. This variant has been previously reported in other South Asian populations, suggesting a founder effect in subcontinent populations. Structural modeling and simulation analysis of mutant proteins revealed altered properties, thus corroborating the pathogenicity of the identified mutation.
ConclusionOur findings may contribute to the elucidation of genotype-phenotype correlations, potentially facilitating the molecular diagnosis of microphthalmia and ASD.
-