Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
41 - 60 of 210 results
-
-
Effects of SGLT2 Inhibitors on Circulating Cyclophilin A Levels in Patients with Type 2 Diabetes
Authors: Furkan Kılıç, Fulya Odabaş, Abdulkadir İltaş, Oguz Akkus, Rabia Akıllı, Gülçin Dağlıoğlu and Gamze AkkuşAvailable online: 29 October 2025More LessObjectiveThis study aimed to evaluate cyclophilin (CypA) levels in patients with diabetes mellitus (DM) before and after treatment. Metabolic variables, such as weight, blood pressure, and plasma glucose, were assessed in these patients.
MethodsThis prospective cross-sectional study was conducted over 24 weeks. We included 38 patients with DM. After confirming the diagnosis of type 2 diabetes, SGLT2i (empagliflozin vs. dapagliflozin) therapy was prescribed to the patients. Weight, body mass index (BMI), waist circumference, body fat ratio, fasting plasma glucose, glycated hemoglobin (HbA1c, %), and CypA levels were measured at 0, 12, and 24 weeks. Patients in the drug subgroup were divided into 2 groups: Empagliflozin (Empa, n=16) and Dapagliflozin (Dapa, n=22).
ResultsWeight (p<0.001), body mass index (p<0.001), percentage of body fat (p<0.001), diastolic blood pressure (p=0.006), fasting plasma glucose (p<0.001), HbA1c (p<0.001), serum creatinine (p<0.001), and CypA (p<0.001) levels after the SGLT2i therapy were statistically decreased compared to pre-treatment values in all patients. When comparing drug subgroups, significant decreases in weight (p=0.013) and percentage body fat (p=0.01) were observed in the Empa group compared with the Dapa group at 24 weeks. Changes in FPG (p=0.399), HbA1c (p=0.102), and CypA (p=0.329) between the two groups seemed to be similar.
DiscussionIn a 24-week study, significant reductions in weight, BMI, body fat percentage, HbA1c, FPG, and diastolic blood pressure with SGLT2i have been reported in those patients. Furthermore, we also observed that cyclophilin A, an oxidative marker of atherosclerosis, plays a destructive role in cardiomyocyte levels, which are decreased during the SGLT2i therapy.
ConclusionBeyond the improvement of metabolic parameters, SGLT2 treatment reduced CypA levels in patients with DM regardless of drug subgroups. These drugs may further prevent the presence of cardiovascular diseases.
-
-
-
Multi-Omics and Mendelian-Randomization Investigation of Mitochondrial Genes in Irritable Bowel Syndrome
Authors: Beibei Xu, Ji Zhang, Yi Huang, Xiuyan Wang, Miaomiao Teng, Xuejian Weng, Yingcong Yu and Endian ZhengAvailable online: 29 October 2025More LessIntroductionThis study aimed to explore potential causal relationships between mitochondria-related genes and irritable bowel syndrome (IBS) using integrative multi-omics analysis.
MethodsGenome-wide association study data for IBS (1,480 cases and 454,868 controls) were integrated with mitochondrial gene data from DNA methylation quantitative trait loci, blood expression quantitative trait loci, and protein quantitative trait loci. Molecular trait associations with IBS were assessed through summary-based Mendelian randomization and co-localization analyses. Steiger filtering analysis was applied to identify causal directions, and candidate genes were independently replicated by two-sample MR in the FinnGen R11 cohort.
ResultsThree primary genes supported by multi-omics evidence—CASP3, GATM, and PDK1—were identified. Increased CASP3 methylation, expression, and protein were positively associated with IBS risk, indicating pro-apoptotic and pro-inflammatory mechanisms, whereas elevated GATM expression and protein were negatively associated, consistent with a protective role via creatine-mediated energy homeostasis.
DiscussionAdditionally, 19 genes were classified as secondary evidence genes and 5 as tertiary evidence genes. Among these, genes such as ACAD10 and MSRA were validated using FinnGen data.
ConclusionThis study represents the first application of multi-omics techniques to elucidate the relationship between mitochondrial genes and IBS. The findings indicate multiple candidate pathogenic genes and highlight the role of mitochondrial dysfunction in IBS pathogenesis. These findings offer new opportunities for the discovery of IBS biomarkers and the development of therapeutic strategies.
-
-
-
Identification of Potential Biomarkers and Drugs for Papillary Thyroid Carcinoma Using Computational Analysis and Molecular Docking
Authors: Tiantian Wang, Jiejun Tan, Zheng Bi, Limei Ma, Sihai Wang, Fuli Zhang and Zhaohui FangAvailable online: 28 October 2025More LessBackgroundPapillary thyroid carcinoma (PTC), the most common thyroid malignancy, presents with multiple variants. This study aimed to identify potential biomarkers and therapeutic candidates for PTC through computational analyses and molecular docking.
MethodsGene expression data related to PTC were obtained from the TCGA-THCA and GEO datasets (GSE35570 and GSE33630) to identify differentially expressed genes (DEGs). Functional enrichment analysis was performed on the DEGs, followed by construction of a protein-protein interaction (PPI) network. Hub genes were identified using recursive feature elimination (RFE) and LASSO regression analyses. A nomogram incorporating these hub genes was developed, and its diagnostic performance was evaluated using receiver operating characteristic (ROC) curves. Furthermore, the relationship between hub genes and immune cell infiltration was investigated. Potential drug candidates targeting the hub genes were predicted and validated through molecular docking.
ResultsCommon DEGs across the three datasets were enriched in pathways such as ECM-receptor interaction, proteoglycans in cancer, and cell adhesion molecules. Significantly enriched GO terms included ‘binding,’ ‘receptor activity,’ ‘integral component of membrane,’ ‘cytoplasm,’ ‘cell adhesion,’ and ‘immune response.’ A PPI network was constructed by intersecting the common DEGs with PTC-related targets. Machine learning algorithms identified three hub genes: SRY-box transcription factor 4 (SOX4), cyclin D1 (CCND1), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1). These hub genes exhibited differential expression in PTC and were used to construct a reliable diagnostic model. Furthermore, molecular docking revealed stable binding between CCND1 and Tipifarnib, suggesting potential therapeutic relevance.
DiscussionWhile previous studies have applied bioinformatics and molecular docking in PTC research, this study uniquely integrates both approaches to identify the hub gene CCND1 and its potential targeting drug, Tipifarnib, as promising molecular markers and therapeutic candidates for PTC.
ConclusionThe hub gene CCND1 and its targeting drug candidate Tipifarnib may contribute to PTC treatment.
-
-
-
Antitumor and Immunoregulatory Effects of Curcumin Analog, (Z)-3-Hydroxy-1-(2-hydroxyphenyl)-3-phenyl prop-2-ene-1-one (DK1), on CT26-Tumor-Bearing BALB/c Mice
Available online: 24 October 2025More LessIntroductionCurcuma longa, commonly known as turmeric, contains curcumin, which is its main compound and has been reported to possess a wide variety of pharmacological activities, such as anti-carcinogenic, anti-malarial, antioxidant, antibacterial, anti-mutagenic, anti-inflammatory, and immunomodulatory effects. Even though it has many strong biological properties, curcumin lacks solubility, which affects its clinical efficacy. DK1 is a curcumin analogue that has been found to possess selective cytotoxicity on breast cancer cells compared to normal breast cells; however, its effectiveness in colon cancer has yet to be validated. This study was performed to investigate the effects of DK1 on colon cancer using an in vivo model in terms of its anti-apoptotic, immunoregulatory, and antioxidant potential. The pathways affected by the DK1 treatment were also evaluated.
MethodsIn this study, male BALB/c mice induced with colon cancer were utilized, and the resulting tumours and spleen were subjected to TUNEL, immunophenotyping, and several antioxidant assays, such as nitric oxide, malondialdehyde, and superoxide dismutase, as well as gene and protein expression analyses.
ResultsK1 treatment led to tumor shrinkage, an increase in apoptotic tumor cells, and elevated populations of helper and cytotoxic T cells by 5% and 3%, respectively. Besides that, the NO and MDA levels were also significantly reduced. This study also observed dysregulations in several oncogenes in the VEGF pathway, such as CMYC, iNOS, and IL-1β genes, which are involved in angiogenesis and inflammation.
DiscussionThe effects of DK1 treatment included antitumor and anti-inflammatory properties against the inoculated CT26 tumour. DK1 showed potential in regulating the inflammation via the VEGF pathway by the significant downregulation of TNF-α and IL-1β pro-inflammatory genes, as well as PTX3, OPN, and serpin-E1 pro-angiogenic proteins.
ConclusionThe results suggested that DK1 may potentially function as an immunoregulator and anti-cancer agent for colon cancer therapy.
-
-
-
Using Disease Models for Mechanistic Studies: Special Focus on Gene Editing
Available online: 24 October 2025More Less
-
-
-
Neutrophil-Related Gene Signatures for Ischemic Stroke Diagnosis
Authors: Rongxing Qin, Xiaojun Liang, Wei Xu, Qingchun Qin, Xinyu Lai, Minshan Xie and Li ChenAvailable online: 20 October 2025More LessIntroductionIschemic stroke (IS) is a major cause of death and disability worldwide. The transcriptional mechanism of neutrophil extracellular trap-related genes (NRGs) and their diagnostic potential remain unknown. This study aims to explore the mechanism of NRGs in IS through machine learning and single-cell RNA sequencing (scRNA-seq).
MethodsWe conducted differential analysis and functional enrichment analysis on the GEO dataset. Machine learning algorithms were used to identify NRGs related to IS. ScRNA-seq analysis was employed to verify the expression of NRGs in different cell types, and cellchat was used to explore the interactions between cell types in the IS. The expression of Eno1 was also verified in the mouse model of middle cerebral artery occlusion (MCAO).
ResultsWe identified 26 differentially expressed NRGs (DE-NRGs). The diagnostic models constructed from five DE-NRGs (ENO1, HMGB1, ILK, ORAI1, SUCNR1) demonstrated high predictive ability. Single-cell analysis revealed that NRGs were highly expressed in the IS group. The experiment verified the significant upregulation of Eno1.
DiscussionThis study employed machine learning and scRNA-seq to identify the DE-NRGs-related diagnostic model, providing a certain theoretical basis for IS risk stratification. More experiments are needed to verify the role of DE-NRGs in IS in the future.
ConclusionThis study identified DE-NRGs with diagnostic capabilities in IS and verified their high expression through scRNA and experimental methods. DE-NRGs may be potential therapeutic targets for IS.
-
-
-
Addressing Unmet Needs in Clostridium difficile Infection: Advances in Diagnosis, Treatment, and Prevention
Available online: 17 October 2025More LessIntroductionClostridium difficile infection (CDI) is a serious global health concern characterized by toxin-induced colonic damage, ranging from diarrhea to life-threatening conditions. Despite improved diagnostics and treatments, recurrence rates of up to 30% underscore persistent gaps in effective disease management.
MethodsCDI pathogenesis is driven by the disruption of the gut microbiota, often due to broad-spectrum antibiotic use. Risk factors such as advanced age, hospitalization, IBD, and immunosuppression increase the severity and recurrence of the infection. The hypervirulent ribotype 027 strain has been associated with increased mortality and treatment resistance, necessitating targeted therapies.
ResultsEmerging treatments such as FMT and monoclonal antibodies show promise for CDI management, with FDA approvals marking progress in microbiome restoration. However, hurdles remain in safety, regulation, and donor screening. Advances in diagnostic and scoring tools have aided in the detection and treatment, but differentiating between colonization and infection remains a challenge. Preventive measures and novel agents such as bacteriocins and bacteriophages offer targeted, microbiome-sparing strategies.
DiscussionDespite recent advances, CDI management remains challenging because of diagnostic uncertainty and frequent recurrences. Innovative treatments such as FMT and monoclonal antibodies are promising but face limitations in safety, access, and cost. Preventive strategies and decision tools help, yet distinguishing colonization from infection remains difficult, underscoring the need for ongoing and multidisciplinary innovation.
ConclusionThis review highlights current approaches to CDI diagnosis, treatment, and prevention, stressing the urgent need for innovative strategies to reduce recurrence. Targeted research and policy efforts are vital to improving outcomes and quality of life for those affected.
-
-
-
RTK AXL and its Isoforms: Regulation and Implications in Cancer
Authors: Ilona Malikova, Aizhan Syzdykova, Nazia Islam, Marina Kriajevska and Eugene TulchinskyAvailable online: 16 October 2025More LessAs a member of the TAM family of receptor kinases, the AXL protein plays an essential role in biological processes that maintain tissue homeostasis. Deregulated AXL signalling in tumour cells is linked to cancer progression, poor prognosis, metastasis, and reduced sensitivity to anti-cancer therapies. The underlying mechanisms are the activation of downstream signalling routes that promote cell survival, invasion and epithelial-mesenchymal transition. Two major AXL isoforms are expressed in human and rodent cells due to alternative splicing. Despite extensive research on AXL in cancer, little is known regarding the functional differences between these isoforms and whether they contribute to cancer differently. This review paper first outlines the structural and functional aspects of TAM biology with a particular focus on AXL. Next, we discuss the different levels of AXL regulation in tumour cells, including proteolytic cleavage, which leads to the formation of both extracellular and nuclear forms of AXL. Finally, we review articles investigating the variations in the function of AXL isoforms and report their associations with cancer. Notably, the formation of isoform 1 is likely to determine the presence of soluble AXL, elevated levels of which have been correlated with cancer progression in several tumour types. The review identifies areas deserving further investigation, such as how changes in isoform expression impact levels of soluble AXL in cancer. Additionally, isoform-specific downstream signalling effects and their impact on metastasis and drug resistance warrant more in-depth investigation.
-
-
-
Innate Immunity Disorders in Non-Infectious Inflammatory Diseases
Available online: 14 October 2025More Less
-
-
-
Investigating the Mechanisms of Mitochondrial Dysfunction in Ischemic Stroke and Predicting Therapeutics Through Machine Learning and Integrated Bioinformatics
Available online: 10 October 2025More LessIntroductionIschemic Stroke (IS) represents the most prevalent subtype of cerebrovascular disease, characterized by complex pathophysiological mechanisms that remain inadequately characterized, particularly concerning mitochondrial dysfunctions. These mitochondrial impairments are increasingly recognized as contributory factors in IS pathogenesis, emphasizing the need for further investigation into the underlying molecular mechanisms involved.
MethodsIn this study, we integrated transcriptomic datasets from the Gene Expression Omnibus (GEO) with the comprehensive MitoCarta3.0 mitochondrial proteome inventory to elucidate the role of dysregulated Mitochondrial-Related Genes (MRGs) in IS. We employed an advanced bioinformatics and machine learning pipeline, incorporating differential expression profiling alongside network-based prioritization using CytoHubba. Rigorous feature selection was conducted through LASSO regression, Support Vector Machine (SVM), and Random Forest (RF) algorithms to derive a robust core MRG signature. Our methodology included training and validation cohorts to construct diagnostic models, which were critically evaluated via Receiver Operating Characteristic (ROC) curves, nomograms, and calibration analyses.
ResultsOur analysis identified a seven-gene signature comprising DNAJA3, ACSL1, HSDL2, ECHDC2, ECHDC3, ALDH2, and PDK4, which demonstrated significant correlation with activated CD8+ T-cell and natural killer cell infiltration. Furthermore, integrative network analyses revealed intricate regulatory interactions among MRGs, microRNAs, and transcription factors. Notably, drug-target predictions indicated Bezafibrate as a promising therapeutic agent for modulating mitochondrial homeostasis in the context of IS.
DiscussionThese findings offer a novel framework for ischemic stroke diagnosis and therapy, yet their computational derivation underscores the need for thorough experimental validation of MRGs and drug candidates, along with the integration of diverse clinical data to confirm their real-world applicability.
ConclusionOur findings underscore mitochondrial dysfunction not only as a critical factor in IS pathogenesis but also as a viable therapeutic target. The identified MRG signature presents potential for clinical application in diagnostic and pharmacological strategies aimed at ameliorating ischemic injury. This study highlights the translational significance of systems biology approaches within cerebrovascular medicine, warranting further mechanistic exploration of mitochondrial-immune interactions in stroke pathology.
-
-
-
Diabetes and Skin Health: Insights into Autoimmunity, Metals, and AGE-Mediated Disorders
Authors: Geir Bjørklund, Monica Butnariu, Leonard Gurgas and Tony HanganAvailable online: 09 October 2025More LessDiabetes mellitus (DM) significantly impacts systemic and skin health, with advanced glycation end-products (AGEs), metal imbalances, and immune dysfunction emerging as central drivers of skin-related complications. Furthermore, dysregulation of essential metals like zinc, copper, and iron exacerbates oxidative damage and immune dysfunction, fostering a detrimental skin environment. Autoimmune processes, increasingly recognized in both type 1 and type 2 DM, contributes towards dermatological conditions such as bullous pemphigoid and vitiligo. Emerging therapeutic strategies, including AGE inhibitors, chelation therapies, antioxidants, RAGE antagonists, and immune modulators, offers promising avenues for intervention. Advances in diagnostic tools, such as LC-MS/MS and ICP-MS, facilitate precise detection of AGEs and metal imbalances, paving the way for innovative therapies. This review underscores the importance of multidisciplinary approaches to address the rising burden of DM-related skin disorders and improve the quality of life of affected individuals.
-
-
-
Exploring the Anti-Glioma Mechanisms of Oridonin: Network Pharmacology and Experimental Insights into EMT Pathways
Authors: Shiliang Chen, Yiran Fei, Xiaoli Jin, Cong Wang, Shiyuan Tong, Yibo He, Changjiang Wu and Zhezhong ZhangAvailable online: 09 October 2025More LessIntroductionGliomas are aggressive brain tumors with a poor prognosis and high recurrence. Oridonin, a traditional Chinese medicine, has shown potential in treating various cancers, but its role in glioma treatment, especially in modulating Epithelial-Mesenchymal Transition (EMT), remains underexplored.
MethodsWe identified 371 potential target genes of Oridonin using various bioinformatics databases. Enrichment analyses, including Differential Expression Analysis, Gene Set Enrichment Analysis (GSEA), and Weighted Gene Co-expression Network Analysis (WGCNA), were performed to link these targets to glioma characteristics. in vitro experiments validated Oridonin's impact on EMT-related gene expression in glioma cells.
ResultsEnrichment analyses identified 19 common genes between Oridonin and glioma targets, with 12 EMT-related core genes. KEGG enrichment highlighted PI3K-Akt, MAPK pathways, and glioma pathways, while DO enrichment included high-grade gliomas. CCK8 assay showed Oridonin IC50 values of 6.92 μM for H4 and 10.54 μM for SW1783 glioma cell lines. WB results indicated increased E-Cadherin and decreased Vimentin, N-Cadherin, and Snail expression after Oridonin treatment. PPI network and single-cell transcriptome analyses identified key genes linked to glioma progression and immune cell infiltration.
DiscussionOridonin may inhibit glioma progression by targeting EMT-related pathways like PI3K-Akt and MAPK. The upregulation of E-Cadherin and downregulation of Vimentin, N-Cadherin, and Snail suggest a reversal of the EMT process. Future work should validate these effects in vivo and explore Oridonin's ability to cross the blood-brain barrier.
ConclusionOridonin may provide a novel therapeutic approach for glioma by targeting EMT-related pathways, offering a foundation for further clinical investigation.
-
-
-
Side Chain Effects on the ipophilicity-antimicrobial-toxicity Correlation of Greener 4-Alkoxy/Amino-7-Chloroquinolines
Available online: 08 October 2025More LessBackgroundMore robust 4-substituted 7-chloroquinolines have been investigated for their diverse properties. However, there is still no systematic study that correlates the effects of the side chain at the 4-position of chloroquine and hydroxychloroquine derivatives with their lipophilicity, antimicrobial and toxicity properties.
ObjectiveTo this end, a cleaner and facile approach was planned to obtain nineteen 4- substituted 7-chloroquinolines, whose influence of the substituent group and side chain extension at the 4-position on their properties was studied.
Methods4-Alkoxy/amino-7-chloroquinolines were prepared by a nucleophilic aromatic substitution (SNAr) reaction between 4,7-dichloroquinoline and alcohols/amines, evaluated for their in silico ADMET test, in vitro antimicrobial activity against Gram-(+) and Gram-(−) bacteria, and Candida albicans fungus, and in vitro toxicity on Artemia salina larvae.
Results4-Alkoxy/amino-7-chloroquinolines were obtained in yields ranging from 81 to 100%. The best results showed antimicrobial activity against Pseudomonas aeruginosa for 4-amino-7-chloroquinolines 6-8, with halos greater than 20 mm, and against C. albicans for 4-amino-7-chloroquinolines 1-3, with halos close to 30 mm. A correspondence between Minnow toxicity prediction and in vitro toxicity on A. salina larvae was observed, where compounds 3 and 14, with R = Pent, were both predicted to have high acute toxicity (log LC50 < -0.3) and classified as highly toxic (LC50 < 100 µg mL-1). It seems that increased lipophilicity in the side chain is harmful to A. salina larvae.
ConclusionConsidering the results for compounds 1-3 and 6-8 with greater activity against C. albicans and P. aeruginosa, respectively, especially for 4-amino-7-chloroquinolines 6 and 7, which are slightly toxic on A. salina larvae (LC50 500-1000 µg mL-1), their antimicrobial studies deserve to be continued by the determination of Minimum Inhibitory Concentration (MIC) values.
-
-
-
Computational Analysis and In Vitro Verification Insights into Quercetin’s Suppression of Neuroinflammation in BV2 Microglia through NF-κB Pathway Inhibition
Available online: 08 October 2025More LessIntroductionNeuroinflammation, primarily mediated by activated microglia, is a significant contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Quercetin (QCT), a dietary flavonoid, has demonstrated anti-inflammatory and neuroprotective properties; however, the detailed molecular mechanisms behind these effects remain unclear. This study aimed to investigate the anti-inflammatory actions of QCT, particularly focusing on its potential to suppress the activation of microglia and subsequent neuroinflammation.
MethodsBV2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce an inflammatory response and were subsequently treated with various concentrations of QCT. Cell viability was assessed using the MTT assay. Levels of pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide (NO) were quantified through ELISA and Griess reaction methods, respectively. Western blot analysis was conducted to examine inducible nitric oxide synthase (iNOS), NF-κB, IκBα, and phosphorylated IκBα protein expressions. In silico approaches, including protein-protein interaction (PPI) network analysis and molecular docking, were employed to explore potential molecular mechanisms involving NF-κB signaling pathways.
ResultsTreatment with QCT significantly reduced the secretion of IL-6 (96%) and TNF-α (87%), as well as NO production (42%), in a dose-dependent manner. Western blot results demonstrated a marked reduction in iNOS expression and inhibition of NF-κB activation through reduced phosphorylation of IκBα following QCT treatment. Molecular docking indicated a strong binding affinity between QCT and IKKβ, suggesting inhibition of the NF-κB pathway.
DiscussionThe findings indicated QCT to exert potent anti-inflammatory effects in LPS-stimulated BV2 cells by modulating key proteins involved in the NF-κB signaling pathway. Specifically, the docking results implied QCT’s direct interaction with the catalytic subunit IKKβ, inhibiting IκBα phosphorylation and subsequent NF-κB activation. The results have been found to be consistent with previous literature, reinforcing QCT's role in reducing neuroinflammation through specific molecular targets and pathways. Further in vivo studies are necessary to validate the findings.
ConclusionQuercetin effectively suppressed neuroinflammation in microglial cells through inhibition of the NF-κB signaling pathway, reducing levels of critical pro-inflammatory mediators. The outcomes have highlighted the potential of quercetin as a preventive nutraceutical for neurodegenerative diseases, necessitating future in vivo investigations to confirm its therapeutic efficacy.
-
-
-
Neuroinflammatory Human Brain Organoids Enable Comprehensive Drug Screening Studies: Fingolimod and its Analogues in Focus
Authors: Busra Acar, Nihan Aktas Pepe, Aleksandra Zivkovic, Holger Stark and Alaattin SenAvailable online: 08 October 2025More LessIntroductionThe absence of physiologically relevant models for neuroinflammatory brain disorders, such as multiple sclerosis (MS), highlights the need for improved drug screening platforms. To bridge this gap, this study aimed to develop a human brain organoid (hBO) model incorporating essential neural cell types, including astrocytes, microglia, and oligodendrocytes.
MethodshBOs were generated from H9 stem cells, and neuroinflammatory characteristics were elicited by lipopolysaccharide (LPS). The expression of specific neuronal and inflammatory markers was assessed through qRT-PCR, immunofluorescence staining (IFS), and ELISA.
ResultsIFS of mature hBOs with anti-SOX2, anti-SATB2, anti-MAPT, anti-GFAP, anti-MBP, and anti-IBA1 antibodies and images collected with the confocal microscope confirmed the differentiation of H9 cells into cortical neurons, astrocytes, microglia, and oligodendrocyte cell types. Elevated GFAP, IBA1, NF-κB, and IL-6 levels, along with reduced CNPase expression with LPS treatment, were considered reflective of MS-like pathology and were used to test fingolimod and its derivatives. Fingolimod and all its derivatives, specifically ST-1505, decreased MAPT (2.1-fold in ELISA, 1.7-fold in IFS), GFAP (1.8-fold in IFS), TNFα (5.4-fold in qRT-PCR), and FABP (1.5-fold in ELISA) levels, and increased IL-10 (11-fold in qRT-PCR) and MBP (2.9-fold in IFS) levels.
DiscussionThe present data collectively showed LPS to evoke neuroinflammation in the hBO model, while fingolimod and its derivatives, particularly ST-1505, exhibited significant anti-inflammatory and neuroprotective properties by counteracting these evoked changes in the hBO model.
ConclusionThe findings supported the applicability of brain organoids as a model system for drug screening studies for neuroinflammatory brain diseases.
-
-
-
Genetically Predicted Gastroesophageal Reflux Disease and Common Thyroid Disorders: A Two-sample Mendelian Randomization Study
Authors: Hanxin Lv, Xinyu Yang, Ruting Zhang, Yuyang Xie, Xiaohan Ni, Xiaoqin Yang and Bimin ShiAvailable online: 06 October 2025More LessIntroductionThe causality between thyroid disorders and Gastroesophageal Reflux Disease (GERD) remains to be deciphered. This two-sample Mendelian Randomization (MR) study was performed to elucidate the causal association between GERD and thyroid diseases and functions.
MethodsSummary statistics for GERD were retrieved from a published GWAS dataset deposited in the Integrative Epidemiology Unit OpenGWAS database. Thyroid hormone level data were obtained from the ThyroidOmics Consortium, and genetic variants associated with thyroid disorders were sourced from the FinnGen Project. MR statistical analyses used the Inverse Variance Weighted (IVW) algorithm, followed by various sensitivity and reliability analyses. Odds Ratio (OR) and beta coefficient (β) with 95% Confidence Interval (CI) were estimated for categorical and continuous outcomes, respectively. The significant causal association was determined based on a Bonferroni-corrected threshold of p-value < 0.0021 (calculated as 0.05/24 trait pairs).
ResultsThe findings of MR analysis tend to favor the causality of GERD for hyperthyroidism (IVW: OR = 1.517, 95% CI: 1.164 to 1.978, p = 2.04E-03) but not the other thyroid disorders. The reverse MR estimates suggested that thyroid disorders may not affect the susceptibility of GERD. Moreover, genetic proxied GERD was significantly negatively associated with circulating Thyroid Stimulating Hormone (TSH) level (IVW: β = -0.048, 95% CI: -0.078 to -0.019, p = 1.17E-03), whereas the causality of this enteropathy on Free Triiodothyronine (FT3), Free Thyroxine (FT4), Total Triiodothyronine (TT3), FT3/FT4 ratio, and TT3/FT4 ratio (and vice versa) is unfounded.
DiscussionThis MR study indicates that the genetic liability to GERD is significantly detrimental to hyperthyroidism risk and the homeostasis of TSH.
ConclusionThe findings suggest that effective GERD management could mitigate hyperthyroidism risk.
-
-
-
Imidazole-2-thione and Acylhydrazone Derivatives Targeting Carbonic Anhydrase-II: Synthesis, In-Vitro Evaluations, and MM-GBSA Calculation
Available online: 06 October 2025More LessIntroductionSeveral pathological conditions, including glaucoma, malignant brain tumors, and renal, gastric, and pancreatic carcinomas, are commonly associated with carbonic anhydrase type II (CA-II). Additionally, CA-II plays a critical role in regulating bicarbonate concentration in the eyes. The inhibition of CA-II reduces aqueous humor production and thus lowers intraocular pressure associated with glaucoma.
ObjectivesThis study aimed to synthesize potent CA-II inhibitors, 5-nitro-1H-benzo[d]imidazole-2(3H)-thione (5NBIT) and acylhydrazone derivatives (1-13).
MethodsIn this study, a new series of potent CA-II inhibitors, 5-nitro-1H-benzo[d]imidazole-2(3H)-thione (5NBIT) and acylhydrazone derivatives (1-13), were synthesized and characterized by IR, NMR, UV and mass spectroscopy and evaluated against bovine carbonic anhydrase-II (bCA-II).
ResultsInterestingly, most of the compounds showed better inhibition than the standard drug, acetazolamide (IC50: 18.2±0.51 µM), such as compounds 1 (IC50: 10.5±0.81 µM), 2 (IC50: 11.3±0.36 µM), 3 (IC50: 16.5±0.53 µM), 4 (IC50: 15.8±1.02 µM), 5 (IC50: 13.7±1.03 µM), and 9 (IC50: 12.2±1.03 µM). Among the synthesized compounds, compound 7 (IC50: 8.2±0.32 µM) exhibited the highest and compound 6 (IC50: 27.6±0.39 µM) showed the lowest inhibition. Structure-activity relationships suggest that the presence of nitro group on the phenyl ring contributed significantly to the overall inhibitory activity. Molecular docking of all the active compounds was performed to predict their binding behavior, which indicated good agreement between docking and experimental findings. Moreover, the MD simulation of compound 7 also showed excellent binding behavior and binding energy within the binding cavity of bCA-II.
ConclusionThese findings suggest that the synthesized 5NBIT and acylhydrazone derivatives exhibited potent CA-II inhibition, with several compounds outperforming the standard drug acetazolamide. These results provide valuable insights for the development of novel CA-II inhibitors with potential therapeutic applications in glaucoma and other related conditions.
-
-
-
The Role of Beta-Lactam Antibiotics in Reactive Oxygen Species Generation and Therapeutic Implications
Authors: Shibani Basu, Mario Valente and Bimal Krishna BanikAvailable online: 02 October 2025More LessReactive oxygen species (ROS) play a pivotal role in cellular damage and the signaling processes, with their production significantly influenced by antimicrobial agents such as β−lactam antibiotics. This review explores the dual role of β−lactam antibiotics and comparable agents, where relevant in antimicrobial therapy, and their significant impact on cellular oxidative stress through the production of ROS. These antibiotics not only disrupt bacterial cell wall synthesis by binding to DD−transpeptidase domains but also induce the formation of ROS, leading to protein damage via chemical modifications into quinone-like products. This process generates advanced oxidation protein products (AOPPs) that influence gene expression related to protein repair. Furthermore, β−lactam antibiotics uniquely expedite the degradation of cellular proteins, affecting the solute carrier family and leading to transcriptional reprogramming. Despite their efficacy in combating bacterial infections, the production of ROS by these antibiotics also poses risks, including oxidative damage and potential antibiotic resistance. Understanding these mechanisms provides insights into optimizing therapeutic strategies and mitigating adverse effects associated with β-lactam and comparable agents, where relevant.
-
-
-
Apolipoprotein A1 and Lipoprotein(a) as Biomarkers for the “Penumbra Freezing” in Acute Ischemic Stroke: Insights From a Case-Control and Mendelian Randomization Study
Authors: Jianyu Liu, Zhiyao Xu, Yang Wen, Xing Guo, Xiaoyang Chen, Da Liu, Linyan Li and Hua LiuAvailable online: 02 October 2025More LessIntroduction“Penumbra freezing” aims to extend vascular recanalization treatment to acute ischemic stroke (AIS) patients beyond the standard time window by preserving the ischemic penumbra. Efficient biomarkers are crucial for identifying patients eligible for AIS treatment.
MethodsThis study enrolled 141 AIS patients who exceeded the conventional treatment window. Using CT perfusion imaging, patients were categorized into “penumbra freezing” and “non-penumbra freezing” groups based on the EXTEND criteria. Multiple regression analysis assessed the association of nine baseline factors and five blood lipid indicators with “penumbra freezing.” Diagnostic accuracy was evaluated using ROC curves. Mendelian randomization (MR) analysis validated these findings using blood lipid indicators as exposures and penumbra biomarkers as outcomes.
ResultsAmong AIS patients beyond the treatment window, males exhibited better penumbra preservation (OR=0.243, 95% CI=0.072-0.813, p=0.022), while those with hyperlipidemia showed poorer preservation (OR=2.429, 95% CI=1.027-7.747, p=0.043). In the “penumbra freezing” group, ApoA1 levels were significantly lower (1.29 ± 0.03 g/L) compared to the “non-penumbra freezing” group (1.42 ± 0.06 g/L, p=0.034). Conversely, Lp(a) levels were significantly higher in the “penumbra freezing” group (304.63 ± 52.44 mg/L) than in the “non-penumbra freezing” group (110.26 ± 40.71 mg/L, p=0.034). Higher ApoA1 levels increased the likelihood of “non-penumbra freezing” beyond the time window (OR=3.206, 95% CI=1.034-9.938, p=0.044), while elevated Lp(a) levels reduced this likelihood (OR=0.075, 95% CI=0.007-0.848, p=0.036). MR analysis confirmed genetic associations of ApoA1 and Lp(a) with penumbra biomarkers.
DiscussionApoA1 and Lp(a) may be linked to ischemic penumbra status, but further validation is needed due to limitations in sample size and study methodology.
ConclusionApoA1 and Lp(a) are promising biomarkers for identifying AIS patients eligible for “penumbra freezing,” suggesting the potential to extend the treatment window.
-
-
-
Mediating Effects of Plasma Metabolites in Inflammatory Protein- Lymphoma Causality: A Mendelian Randomization Study
Authors: Yueru Ji, Xiaotong Gao, Li Liu, Zhuo Wan and Weiwei QinAvailable online: 02 October 2025More LessIntroductionDiffuse large B-cell lymphoma (DLBCL) pathogenesis is poorly understood, with limited causal evidence linking circulating inflammatory proteins (CIPs) and metabolites to disease risk. Observational studies face challenges from confounding and reverse causation, while existing Mendelian Randomization (MR) analyses lack bidirectional designs and multi-omics integration.
MethodsA bidirectional two-sample MR design was applied using inverse-variance weighting (IVW). Genetic instruments for 91 CIPs derived from Olink proteomic data (14,824 participants). DLBCL genetic associations (1,050 cases; 314,193 controls) were obtained from FinnGen (R10 release). Data for 1,091 blood metabolites and 309 metabolite ratios were sourced from the GWAS Catalog.
ResultsTen CIPs exhibited causal effects on DLBCL. Risk-increasing proteins included: IL-10 (OR=1.46, 95%CI=1.05-2.03), TSLP (1.37,1.01-1.84), IL-17C (1.34,1.05-1.72), NRTN (1.30,1.02-1.66), OPG (1.29,1.01-1.66), and MCP1 (1.26,1.04-1.52). Protective proteins included: CD40 (0.82,0.67-1.00), CXCL9 (0.78,0.61-0.98), CD5 (0.77,0.61-0.97), and MCP3 (0.76,0.58-0.99). Reverse causation was absent for 7 proteins. Mediation analysis revealed 17.2% (p=0.048) of CD5’s protective effect was mediated by 1-methylhistidine.
DiscussionThese findings establish CIPs as causal factors in DLBCL pathogenesis and identify metabolite-mediated pathways as novel mechanistic links. The bidirectional design and multi-omics integration overcome key limitations of prior research, though statistical power for some mediation tests was limited by metabolite GWAS sample sizes.
ConclusionPlasma inflammatory proteins causally influence DLBCL risk, partially mediated by metabolites. This underscores metabolite pathways as potential targets for therapeutic intervention.
-