- Home
- A-Z Publications
- Current Medicinal Chemistry
- Fast Track Listing
Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
21 - 40 of 47 results
-
-
Elucidating the Role of Autophagy-related Genes in Polycystic Ovary Syndrome: Implications for Diagnostic Models and Immune Response Regulation
Authors: Nan Li, Kai Yu, Delun Huang, Hua Guo, Xuehong Zhu and Zhong LinAvailable online: 17 October 2024More LessBackgroundPolycystic Ovary Syndrome (PCOS) is a common endocrine disorder that negatively affects female reproductive capacity. Although the association between autophagy and PCOS is known, there are few detailed studies on the association between autophagy-related genes and PCOS.
MethodsPublicly available gene expression datasets (GSE102293, GSE138518, GSE34526, GSE114419, GSE137684, GSE155489) were used in a comprehensive analysis to identify a role for autophagy in PCOS. Batch effects were mitigated using the sva package, followed by WGCNA (weighted gene correlation network analysis) and ssGSEA (single sample gene set enrichment analysis) to identify autophagy-related genes. Recursive feature elimination (RFE) and LASSO COX methods were used to identify important hub genes, and their correlation with immune cell activity was assessed using ssGSEA and Pearson correlation analysis.
ResultsHigh autophagy scores were observed in PCOS samples, and the dark green gene module with the highest autophagy correlation was identified. The differential analysis identified a total of 169 up-regulated genes versus 2 down-regulated genes in the PCOS samples, which were intersected by taking the intersection with the deep green module genes and resulted in 121 key genes. Subsequently, 6 hub genes (MMP25, CSF3R, SLPI, MMP9, CLEC4E, and SIGLEC10) were further identified based on RFE and LASSO algorithms. Diagnostic efficacy based on ROC curves showed six autophagy-associated hub genes with AUC values as high as 0.959 and 0.896 in the training and validation sets, respectively. Finally, we observed that these hub genes are strongly associated with immune function, especially chronic inflammation and aberrant immune activation pathways.
ConclusionIn this study, we identified autophagy genes closely related to PCOS and constructed a gene model with high diagnostic accuracy. These findings not only provided potential new biomarkers for the diagnosis of PCOS but also revealed the key role of autophagy in the pathogenesis of PCOS.
-
-
-
Impact of Obesity, Menopause, and Depression in Women’s Health: An Attempt to Decipher the Complex Relationship
Authors: Pervej Alom Barbhuiya and Manash Pratim PathakAvailable online: 16 October 2024More LessBackgroundMenopause symptoms may be distressing, especially when they appear at a time when women are expected to play significant responsibilities in society. Numerous biological systems are influenced by the hormonal changes that start during the menopausal transition. This review attempts to decipher the complex relationship between obesity, menopause, and depression, citing some recent longitudinal and cross-sectional studies. Additionally, this study provides a summary of the different phytoestrogens, their sources, and probable mechanisms of action in addition to available therapeutic alternatives.
MethodologyFor this review purpose, the authors have gone through a vast number of articles from various scientific databases like PubMed, Google Scholar, and Web of Science.
ResultsIt is becoming clear that the physiological basis for these menopausal symptoms is complicated and connected to estrogen deficiency, but not alone. Other hormones like FSH, LH, progesterone, and inhibin B are the major ones that are both directly and indirectly responsible for most of the menopausal symptoms. Numerous longitudinal and cross-sectional studies have found a direct relationship between the incidence of menopause and depression as well as obesity. Phytoestrogens like stilbene, lignans, isoflavone, and coumestan have been reported to be the alternatives to synthetic estrogen with lesser side effects, as reported in various studies.
ConclusionThe complex relationship between depression, menopause, and obesity presents a complex obstacle to women's health and overall well-being. There might be a lot of promising prospects for revolutionary advancements in women's health during the menopausal stage in the future. Promising drug development that targets not just one but also the three conditions -obesity, menopause, and depression - as well as more thorough research are needed to improve the healthcare system for women who suffer from these conditions.
-
-
-
Thrombosis in Hypertension: Pathophysiology, Biomarkers, and the Effect of Antihypertensive Treatment
Available online: 16 October 2024More LessHypertension, characterized by elevated blood pressure levels, remains a global health concern due to its association with cardiovascular complications, notably thrombosis. Thrombosis, the formation of blood clots within blood vessels, poses a significant risk for myocardial infarction, stroke, and limb ischemia, leading to adverse patient outcomes. Understanding the pathophysiological mechanisms underlying thrombosis in hypertension is crucial for developing effective preventive and therapeutic strategies. Hypertension induces structural and functional alterations in the vasculature, endothelium, and platelets, creating a prothrombotic milieu. Endothelial dysfunction, increased platelet activation, and alterations in coagulation factors contribute to the heightened thrombotic risk observed in hypertensive individuals. Biomarkers associated with thrombotic events, such as mean platelet volume, D-Dimer, and fibrinogen offer valuable insights into the pathogenesis of thrombosis and may serve as prognostic indicators for cardiovascular events in hypertensive populations. Investigating the impact of antihypertensive treatment on thrombotic risk is essential, as these medications exert pleiotropic effects on the vasculature and hemostatic system. By elucidating the intricate interplay between hypertension and thrombosis, this review aims to enhance our understanding of cardiovascular risk in hypertensive individuals and identify novel therapeutic targets for preventing thrombotic complications.
-
-
-
Molecular Docking in Drug Discovery: Techniques, Applications, and Advancements
Authors: Cinthia Aguiar and Ihosvany CampsAvailable online: 16 October 2024More LessThe primary objective of this study is to conduct a comprehensive review of the significance of molecular docking in the field of drug discovery. This includes an examination of the various approaches and methods used in molecular docking, as well as an exploration of the techniques used for interpreting and validating docking results. To gather relevant data, a systematic search was conducted using Web of Science, PubMed, and Google Scholar. The search focused on articles related to molecular docking methodologies and their applications in drug discovery. Additionally, alternative techniques that can be used for more precise simulations of ligand-protein interactions were also considered. Molecular docking has proven to be an incredibly rich and valuable process in the field of drug discovery. Its flexibility allows for the incorporation of advanced computational techniques, thereby enhancing the reliability and efficiency of drug discovery processes. The results of the study highlights the significant strides made in the field of molecular docking, demonstrating its potential to revolutionize drug discovery. Molecular docking continues to evolve, with new advancements being made regularly. Despite the challenges faced, these advancements have significantly contributed to the enhancement of molecular docking, solidifying its position as a crucial tool in the field of drug discovery.
-
-
-
Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells
Authors: Zahra Dorostgou, Malihe Hoseyni, Afsaneh Bahrami, Rahele Zhiani and Mahnaz MohtashamiAvailable online: 16 October 2024More LessBackgroundSkin melanoma is a potentially lethal cancer and ranks as the 17th most common cancer worldwide. Overcoming resistance to advanced-stage melanoma is a significant challenge in its treatment. Parthenolide (PAR) is recognized as a potent anticancer small molecule, yet its potential in treating melanoma is poorly investigated.
ObjectiveOur objective was to investigate the apoptotic and anti-metastatic properties of PAR against the A2058 melanoma cells in vitro.
MethodsThis study employed various assays, such as cytotoxicity, apoptosis, cell cycle analysis, reactive oxygen species (ROS) production, mRNA expressions, western blotting, gelatin zymography, and scratch assay. The synergy between PAR and dacarbazine, a chemotherapy drug for treating skin cancer, was also assessed.
ResultsOur study revealed that PAR significantly reduced the viability of A2058 cancer cells, demonstrating greater potency against cancer cells compared to normal L929 cells (IC50: 20 µM vs. 27 µM after 24h). PAR increased ROS production, elevated mRNA expression of pro-apoptotic Bax and NME1 genes, and decreased expression of the MITF gene. PAR induced apoptosis and cell cycle arrest in A2058 cells, as evidenced by the increased proportion of cells in the late apoptotic phase and sub-G1 cell cycle arrest. MMP-2 and MMP-9 mRNA and protein expressions, gelatinase activity, and the migration of A2058 cells were also decreased by PAR, suggesting its potential to suppress cancer cell invasion.
ConclusionThese results, along with the synergic effect with dacarbazine, indicated that PAR may have the potential to be a therapeutic drug for melanoma by triggering apoptosis and suppressing invasion and migration.
-
-
-
Development and Validation of a Cholesterol-related Gene Signature for Prognostic Assessment in Head and Neck Squamous Cell Carcinoma
Authors: Jiarong Zheng, Dalong Shu, Rongwei Xu, Yuchen Zheng, Pei Lin, Yunfan Lin, Xinyuan Zhao, Li Cui, Xin Liao and Bing GuoAvailable online: 15 October 2024More LessAimThis study seeks to develop a prognostic risk signature for head and neck squamous cell carcinoma (HNSCC) based on cholesterol-related genes (CholRG), aiming to enhance prognostic accuracy in clinical practice.
BackgroundHNSCC poses significant challenges due to its aggressive behavior and limited response to standard treatments, resulting in elevated morbidity and mortality rates.In order to improve prognostic prediction in HNSCC, our study is inspired by the realization that cholesterol metabolism plays a critical role in accelerating the progression of cancer. To this end, we are developing a unique risk signature using CholRG.
ObjectiveThe aim of this study was to create a CholRG-based risk signature to predict HNSCC prognosis, aiding in clinical decision-making accurately.
MethodThe TCGA HNSCC dataset, along with GSE41613 and GSE65858, was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. A CholRG-based risk signature was then developed and validated across various independent HNSCC cohorts. Moreover, a nomogram model incorporating CholRG-based risk signature was established. Additionally, functional enrichment analysis was conducted, and the immune landscapes of the high- and low-risk groups were compared. Finally, in vitro experiments were performed using lipid-based transfection to deliver siRNAs targeting ACAT1 to SCC1 and SCC23 cell lines, further examining the effects of ACAT1 knockdown on these cells.
ResultsUtilizing RNA-seq, microarray, and clinical data from public databases, we constructed and validated a CholRG-based risk signature that includes key genes such as ACAT1, CYP19A1, CYP27A1, FAXDC2, INSIG2, PRKAA2, and SEC14L2, which can effectively predict the clinical outcome of HNSCC. Additionally, our findings were reinforced by a nomogram model that integrates the risk score with clinical variables for more clinically practical prognostic assessment. In addition, patients at high risk show hypoxia and increased oncogenic pathways such as mTORC1 signaling, as well as a suppressed immune microenvironment marked by a reduction in the infiltration of important immune cells. Notably, in vitro experiments showed that ACAT1 depletion significantly suppressed the proliferation, colony formation, and invasion capabilities of HNSCC cells, confirming ACAT1's role in promoting malignancy.
ConclusionCollectively, our study not only underscores the importance of cholesterol metabolism in HNSCC pathogenesis but also highlights the CholRG-based risk signature as a promising tool for enhancing prognostic accuracy and personalizing therapeutic strategies.
-
-
-
Astaxanthin Is a Novel Candidate for Glioblastoma Treatment? A Review
Available online: 14 October 2024More LessGlioblastoma (GBM) is a malignant primary brain tumor with a poor prognosis and high recurrence rates. At present, the current treatments available for GBM patients can only prolong their overall survival and cannot provide a complete cure. Discovering an effective therapy against the disease is a challenge due to its recurrence and resistance to common available treatments for GBM. Several natural products have been documented to possess the potential to function as anticancer agents through diverse mechanisms. Astaxanthin (AXT) is an orange-red pigment that is a natural lipophilic and xanthophyll carotenoid derived mostly from microalgae. Numerous studies have examined that AXT impacts GBM cells in laboratory settings and animal models. This review aims to provide the latest information about the potential of astaxanthin as a novel therapeutic option for GBM. AXT has been targeted more on reactive oxygen species (ROS), and suppressed tumor growth in vitro and in vivo conditions. The available data suggests that AXT might serve as a key component in the development of innovative cancer therapies, especially for glioblastoma.
-
-
-
Synthesis of Novel Indolyl Aryl Sulfone-clubbed Hydrazone Derivatives as Potential HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Molecular Modeling and QSAR Studies
Authors: Hazrat Ali, Abdul Latif, Mumtaz Ali, Ammara, Muhammad Waqas, Manzoor Ahmad, Asaad Khalid, Ajmal Khan and Ahmed Al-HarrasiAvailable online: 14 October 2024More LessBackgroundNon-Nucleoside Reverse Transcriptases Inhibitors (NNRTIs) are among the most extensively studied enzymes for understanding the biology of Human Immunodeficiency Viruses (HIV) and designing inhibitors for managing HIV infections. Indolyl aryl sulfones (IASs), an underexplored class of potent NNRTIs, require further exploration for the development of newer drugs for HIV.
AimsIn this context, we synthesized a series of novels by Indolyl Aryl Sulfones with a hydrazone moiety at the carboxylate site of the indole nucleus. A 2D-QSAR model was developed to predict Reverse Transcriptase inhibitory activity against wild-type RT (WT-RT) enzyme.
MethodThe model was successfully applied to predict the HIV-1 inhibitory activity of known Indolyl Aryl Sulfones. Considering the reliability, robustness, and reproducibility of the 2D-QSAR model, we made an in-silico prediction of the RT inhibition for our synthesized compounds (1-14).
ResultsMolecular docking and dynamics simulations established our synthesized Indolyl Aryl Sulfones, particularly compounds 23, 24, and 28, as effective NNRTIs by stabilizing HIV reverse transcriptase's structure. Binding energy calculations revealed compound 28 as the strongest inhibitor (-43.21 ± 0.09 kcal/mol), followed by 23 (-40.94 ± 0.10 kcal/mol) and 24 (-39.18±0.08 kcal/mol), emphasizing their binding affinity towards HIV reverse transcriptase.
ConclusionIn summary, the synthesized Indolyl Aryl Sulfones, particularly compounds 23, 24, and 28, demonstrate significant potential as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) against HIV. These results highlight the promising role of these compounds in developing novel NNRTIs for managing HIV infections.
-
-
-
Synthesis of 2,4-Bis(trifluoromethyl)benzaldehyde Hybrid Thiosemicarbazones as Prolyl Oligopeptidase Inhibitors for Neurodegenerative Disorders and their In-silico Analysis
Available online: 14 October 2024More LessIntroductionProlyl-specific oligopeptidase (POP), one of the brain's highly expressed enzymes, is an important target for the therapy of central nervous system disorders, notably autism spectrum disorder, schizophrenia, Parkinson's, Alzheimer's disease, and dementia.
MethodThe current study was designed to investigate 2,4-bis(trifluoromethyl) benzaldehyde-based thiosemicarbazones as POP inhibitors to treat the above-mentioned disorders. A variety of techniques, such as nuclear magnetic resonance (NMR), mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR), were used for the structural confirmation of synthesized compounds. After in-vitro evaluation, all of these compounds were found to be prominent inhibitors of the POP enzyme (IC50= 10.14 - 41.73 µM).
ResultCompound 3a emerged as the most active compound (IC50 10.14 ± 0.72 µM) of the series. The kinetic study of the most active 3a (Ki =13.66 0.0012 µM) indicated competitive inhibition of the aforementioned enzyme.
ConclusionMoreover, molecular docking depicted a noticeable role of thiosemicarbazide moiety in the binding of these molecules within the active site of the POP enzyme.
-
-
-
Identifying Mechanism of RSV for the Treatment of COVID-19 and Idiopathic Pulmonary Fibrosis via Suppressing Inflammation Response Through IL-17 Signaling Pathway from the Perspectives of in silico Study
Authors: Jiahao Wang, Jiamiao Shi, Ning Jia and Qinru SunAvailable online: 11 October 2024More LessBackgroundBoth coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) could cause severe pulmonary injury and have extremely dismal prognoses with a high risk of mortality. Resveratrol (RSV), a natural polyphenol, has promising potential in the treatment of viral infection and pulmonary fibrosis.
ObjectiveThe purpose of this research was to investigate the unclear mechanism of RSV as an anti-COVID-19 and IPF therapy.
MethodUtilizing relevant databases, the intersection of genes related to IPF, COVID-19, and possible RSV targets was discovered. Then the obtained targets were investigated using GO and KEGG analysis, TP and PPI network analysis. Furthermore, the binding affinities between core targets and RSV were calculated using molecular docking.
ResultsThe 1101 COVID-19 targets, 2166 IPF targets, and 341 RSV targets intersected with 21 overlapping targets. PPI network reveals the interactions among targets and TP network reveals interactions between targets and pathways. Five targets including JUN, CCL2, CXCL8, IL6, and SERPINE1 were identified as the core targets through two network analyses. GO analysis demonstrated chemotaxis, inflammatory response and angiogenesis were the significant pathophysiological processes. Combing TP network analysis and KEGG analysis, IL-17 signaling pathway was considered as the significant pathway. Except for JUN, molecular docking showed the binding energies of other four targets were lower than -5 kcal/mol indicating intimate interactions between RSV and other targets.
ConclusionsOur research elucidate the targets, pathways and pathophysiological processes of RSV involved in effects of anti-COVID-19 and IPF, suggesting RSV could be a therapeutic candidate for reducing infection and fibrosis.
-
-
-
FOXN3-AS1: A Candidate Prognostic Marker and Epigenetic Target with Immunotherapeutic Implications in Acute Myeloid Leukemia
Available online: 11 October 2024More LessAimWe focused on the FOXN3 gene and selected its antisense transcripts (FOXN3-AS1) to investigate its potential involvement in acute myeloid leukemia (AML).
BackgroundSeveral integrated multi-omics datasets have expanded the horizons of the cancer landscape. With the emergence of new high-throughput technologies, a large number of non-coding RNAs have been confirmed to be involved in the pathogenesis of different types of hematological malignancies.
MethodsWe conducted experimental validation using quantitative polymerase chain reaction (qPCR) with bone marrow specimens from AML patients. Then, Kaplan-Meier (KM) and Receiver Operating Characteristic (ROC) curves were used to substantiate the prognostic association between FOXN3-AS1 and AML patients within the TCGA database. Correlation between FOXN3-AS1 expression and gene mutation, immune, and immune function using Spearman correlation analysis. To explore the physical and functional interaction between FOXN3-AS1 and the DNMT1 protein, we utilized the RPISeq web tool from Iowa State University. Subsequently, we performed qPCR experiments to test the effect of 5AzaC (DNMT1 inhibitor) on FOXN3-AS1 expression AML cell lines (THP1 and OCI-AML3). We leveraged the “OncoPredict” R package in conjunction with the Genomics of Drug Sensitivity (GDSC) database to predict drug response in AML patients expressing FOXN3-AS1.
ResultsWe observed a significant upregulation of FOXN3-AS1 expression in AML patients compared to healthy controls using clinical samples. The TCGA database revealed an association between high FOXN3-AS1 expression and adverse prognosis. In our subsequent analysis, genes with poor prognostic implications in AML patients were exclusively identified in the FOXN3-AS1 high-expression group, further corroborating this relationship. AML patients with higher FOXN3-AS1 expression levels may respond less optimally to immunotherapy than patients with lower levels. Besides, we computationally predicted the interaction of FOXN3-AS1 and DNMT1 protein and experimentally confirmed that DNMT1i (GSK-3484862) affects the expression level of FOXN3-AS1. We also found that the chemotherapy drugs (5-Fluorouralic, Cisplatin, Dactolisib, Sapitinib, Temozolomide, Ulixertinib, Vinorelbine, Ruxolitinib, Osimertinib and Cisplatin) showed favorable responses in AML patients with high FOXN3-AS1 expression levels.
ConclusionOur candidate approach identifies FOXN3-AS1 as a prognostic indicator of survival in AML with a potential immune-related role. The preliminary observations we made on FOXN3-AS1/DNMT1 crosstalk warrant more in-depth invested immunotherapeutic approaches in AML.
-
-
-
Mitochondrial Dysfunction Associated with mtDNA Mutation: Mitochondrial Genome Editing in Atherosclerosis Research
Available online: 11 October 2024More LessBackgroundAtherosclerosis is a complex cardiovascular disease often associated with mitochondrial dysfunction, which can lead to various cellular and metabolic abnormalities. Within the mitochondrial genome, specific mutations have been implicated in contributing to mitochondrial dysfunction. Atherosclerosis-associated m.15059G>A mutation has been of particular interest due to its potential role in altering mitochondrial function and cellular health.
ObjectiveThis study aims to investigate the role of the atherosclerosis-associated m.15059G>A mutation in the development of mitochondrial dysfunction in monocyte-like cells.
MethodsMonocyte-like cytoplasmic hybrid cell line TC-HSMAM1, which contains the m.15059G>A mutation in mtDNA, was used. The MitoCas9 vector was utilized to eliminate mtDNA copies carrying the m.15059G>A mutation from TC-HSMAM1 cybrids. Mitochondrial membrane potential, generation of reactive oxygen species, and lipid peroxidation levels were assessed using flow cytometry. Cellular reduced glutathione levels were assessed using the confocal microscopy. The oxygen consumption rate was measured using polarographic oxygen respirometry.
ResultsThe elimination of the m.15059G>A mutation resulted in a significant increase in mitochondrial membrane potential and improved mitochondrial efficiency while also causing a decrease in the generation of reactive oxygen species, lipid peroxidation, as well as cellular bioenergetic parameters, such as proton leak and non-mitochondrial oxygen consumption. At the same time, no changes were found in the intracellular antioxidant system after the mitochondrial genome editing.
ConclusionsThe presence of the m.15059G>A mutation contributes to mitochondrial dysfunction by reducing mitochondrial membrane potential, increasing the generation of reactive oxygen species and lipid peroxidation, and altering mitochondrial bioenergetics. Elimination of the mtDNA containing atherogenic mutation leads to an improvement in mitochondrial function.
-
-
-
Synthesis, DFT, ADMET, and Docking studies of Novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide
Available online: 11 October 2024More LessBackgroundThe development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.
ObjectiveThis study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-cancer agents.
MethodsThe synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.
ResultsCompounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.
ConclusionSynthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.
-
-
-
From Proteomics to Diagnosis: Biomarker Discovery in Tuberculosis Research
Authors: Jiarong Yang and Jianhua ZhengAvailable online: 11 October 2024More LessTuberculosis (TB) is a leading cause of death from a single infectious disease worldwide. Early and accurate diagnosis is advantageous for timely detection and prompt treatment, thereby reducing the risk of disease transmission, which is essential for effective TB control. Biomarkers provide a valuable resource for TB diagnosis. Proteomic technologies have emerged as a powerful tool in biomarker discovery. In this perspective, we explore how proteomic technologies contribute to the discovery of TB diagnostic biomarkers. We also address the challenges and discuss prospective methods to augment the performance of biomarkers in diagnosing TB.
-
-
-
Anticancer Drug Discovery from Natural Compounds Targeting PI3K/AKT/mTOR Signaling Pathway
Available online: 10 October 2024More LessThe term cancer is used to describe a complex pathology characterized by the uncontrollable proliferation of cells, which displays a fast metastatic spread, being a disease with difficult treatment. In this context, Phosphatidylinositol 3-kinase (PI3K) represents a promising pathway to be inhibited, aiming to develop anticancer agents, since it performs a pivotal role in regulating essential cellular processes, including cell proliferation, growth, autophagy, and apoptosis. In parallel, natural compounds can effectively represent a therapeutic strategy to fight against malignant cells. Then, compounds derived from various plant sources, such as flavonoids, terpenoids, alkaloids, coumarins, and lignans, have exhibited remarkable in vitro and in vivo anticancer properties. This review focused in the exploration of natural products targeting the PI3K/AKT/m-TOR signaling pathway, demonstrating that these compounds could even further investigated to reveal novel and effective anticancer drugs in the future.
-
-
-
Discovery of 5-(Substituted Phenyl)-2-aryl Benzimidazole Derivatives as SIRT1 Activators: Their Design, in silico Studies, Synthesis, and in vitro Evaluation
Authors: Shilpi Chauhan, Ashwani Kumar, Rajnish Kumar and Deepika SainiAvailable online: 10 October 2024More LessAimSilent information regulator two homologue one (SIRT1) is an emerging target for managing metabolic disorders. This study aimed to synthesize novel 5-(substituted phenyl)-2-aryl benzimidazole derivatives and evaluate them for SIRT1 activation.
MethodsThe compounds were designed according to the findings of the QSAR models framed in our previous studies. Molecular docking and dynamics studies were also performed to explore the interactions of designed compounds with the active site of the SIRT1 enzyme using AutoDock Vina and Schrödinger Maestro version 11.8.012, respectively. Compounds with good binding affinity were synthesized by Suzuki-Miyaura cross-coupling and spectrally characterized. The molecules were evaluated for their in vitro SIRT1 activation properties using a fluorescent screening kit. Based on the results of in vitro assay, a structure-activity relationship was established. SwissADME was employed to calculate the pharmacokinetics characteristics of the synthesized molecules.
ResultsThe molecular docking studies revealed that all the activators were effectively docked in the catalytic active site. All compounds demonstrated interactions with important amino acids like Glu230 and Arg446. In molecular dynamics simulations, the root mean square deviation (RMSD) of compound 5m and protein SIRT1 remained stable, i.e., below 3mm. Compound 5m, 4-(2-(3,4-dihydroxy-5-nitrophenyl)-1H-benzo[d]imidazol-5-yl)benzaldehyde, was the most potent compound with an EC50 value of 0.006 mM (±0.001) and maximum activation of 240.5%. All the synthesized compounds had acceptable theoretical ADME profiles, and drug-likeness properties complied with Lipinski’s rule.
ConclusionAccording to the findings, synthesized compounds may be viable leads for SIRT1 activators and may be used to advance preclinical in vivo research utilizing animal models.
-
-
-
Implementation of an Automated System Using Machine Learning Models to Accelerate the Process of In Silico Identification of Small Molecules As Drug Candidates
Available online: 10 October 2024More LessDrugs are commonly utilized to diagnose, cure, or prevent the occurrence of diseases, as well as to restore, alter, or change organic functions. Drug discovery is a time-consuming, costly, difficult, and inefficient process that yields very few medicinal breakthroughs. Drug research and design involves the capturing of structural information for biological targets and small molecules as well as various in silico methods, such as molecular docking and molecular dynamic simulation. This article proposes the idea of expediting computational drug development through a collaboration of scientists and universities, similar to the Human Genome Project using machine learning (ML) strategies. We envision an automated system where readily available or novel small molecules (chemical or plant-derived), as well as their biological targets, are uploaded to an online database, which is constantly updated. For this system to function, machine learning strategies have to be implemented, and high-quality datasets and high quality assurance of the ML models will be required. ML can be applied to all computational drug discovery fields, including hit discovery, target validation, lead optimization, drug repurposing, and data mining of small compounds and biomolecule structures. Researchers from various disciplines, such as bioengineers, bioinformaticians, geneticists, chemists, computer and software engineers, and pharmacists, are expected to collaborate to establish a solid workflow and certain parameters as well as constraints for a successful outcome. This automated system may help speed up the drug discovery process while also lowering the number of unsuccessful drug candidates. Additionally, this system will decrease the workload, especially in computational studies, and expedite the process of drug design. As a result, a drug may be manufactured in a relatively short time.
-
-
-
Unveiling the Power of Mitochondrial Fission and Fusion: A Five-Gene Signature for Personalized Prognosis in Gastric Cancer
Authors: Bin Zhou, Ping Tie, Dongbing Li, You Lu and Yuanhua LiuAvailable online: 08 October 2024More LessBackgroundMitochondrial fission and fusion play important roles in tumorigenesis, progression and therapy. Dysregulation of these processes may lead to tumor progression, and regulation of these processes may provide novel strategies for cancer therapy. The involvement of genes related to mitochondrial fission and fusion (MD) in gastric cancer (GC) remains poorly understood.
ObjectiveThe aim of this study was to establish an MD gene signature for GC patients and to investigate its association with prognosis, tumor microenvironment and treatment response in GC.
MethodsWe use the TCGA-GC database as the cohort, focusing specifically on genes associated with MD. We conducted identification and consistency clustering analysis of differentially expressed genes in MD, conducted MD gene mutation and copy number variation analysis, as well as correlation and functional enrichment analysis between MD gene cluster classification and immune infiltration. TCGA-GC and GSE15459 were used to construct training and validation cohorts for the model. We used various statistical methods, including Cox and Lasso regression, to develop the model. We validated the model using bulk transcriptome and single-cell transcriptome datasets (GSE13861, GSE26901, GSE66229, and GSE13450). We used GSEA enrichment, CIBERSORT algorithm, ESTIMATE, and TIDE to gain insight into the annotation of MD signature and the characterization of the tumor microenvironment. OncoPredict was used to analyze the relationship between the PRG signature and the drug sensitivity. We validated the expression of several key genes in MD signature on GC cell lines using quantitative real-time PCR (qRT-PCR).
ResultsThese MDs-related subtypes exhibited different prognosis and immune filtration patterns. A five-gene signature, comprising AGT, HCFC1, KIFC3, NOX4, and RIN1, was developed. There was a clear distinction in overall survival between low- and high-risk patients. The analyses showed further confirmation of the independent prognostic value of the gene signature. There was a notable correlation between the MD signature, immune infiltration and drug susceptibility. The expression levels of AGT, HCFC1, KIFC3, NOX4 and RIN1 mRNA were all increased in these GC cells.
ConclusionThe MD signature has the capacity to significantly contribute to the prediction of personalized outcomes and the advancement of novel therapeutic strategies tailored for GC patients.
-
-
-
Quassinoids as Promising Anti-cancer Agents
Authors: Tripti Mishra, Saima and Bimal Krishna BanikAvailable online: 04 October 2024More LessThe use of current anticancer drugs is hampered by significant side effects and high costs. In the pursuit of safer, more effective, and affordable options, researchers have turned to nature as a valuable source of potential anticancer compounds. Quassinoids, a class of natural terpenoids, have garnered attention for their anticancer properties. This comprehensive review aims to shed light on natural quassinoids and their anticancer effects, offering valuable insights for researchers dedicated to the development of novel anticancer therapeutics.
-
-
-
Integrated Exploration of Pyranocoumarin Derivatives as Synergistic Inhibitors of Dual-target for Mpro and PLpro Proteins of SARS-CoV-2 through Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation
Available online: 03 October 2024More LessAimsThis study aimed to explore the potential of natural anticoagulant compounds as synergistic inhibitors of the main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2 and find effective therapies against SARS-CoV-2 by investigating the inhibitory effects of natural anticoagulant compounds on key viral proteases.
ObjectiveThe objectives of this study were to conduct rigorous virtual screening and molecular docking analyses to evaluate the binding affinities and interactions of selected anticoagulant compounds with Mpro and PLpro, to assess the pharmacokinetic and pharmacodynamic profiles of the compounds to determine their viability for therapeutic use, and to employ molecular dynamics simulations to understand the stability of the identified compounds over time.
MethodIn this study, a curated collection of natural anticoagulant compounds was conducted. Virtual screening and molecular docking analyses were performed to assess binding affinities and interactions with Mpro and PLpro. Furthermore, pharmacokinetic and pharmacodynamic analyses were carried out to evaluate absorption, distribution, metabolism, and excretion profiles. Molecular dynamics simulations were performed to elucidate compound stability.
ResultNatural compounds exhibiting significant inhibitory activity against Mpro and PLpro were identified. A dual-target approach was established as a promising strategy for attenuating viral replication and addressing coagulopathic complications associated with SARS-CoV-2 infection.
ConclusionThe study lays a solid foundation for experimental validation and optimization of identified compounds, potentially leading to the development of precise treatments for SARS-CoV-2.
-