Skip to content
2000
Volume 31, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into -infected macrophages either using passive targeting or using macrophage-related receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the and effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both and conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230823094737
2023-08-23
2025-01-14
Loading full text...

Full text loading...

References

  1. KevricI. CappelM.A. KeelingJ.H. New world and old world leishmania infections: A practical review.Dermatol. Clin.201533357959310.1016/j.det.2015.03.018 26143433
    [Google Scholar]
  2. ShirianS. OryanA. HatamG.R. PanahiS. DaneshbodY. Comparison of conventional, molecular, and immunohistochemical methods in diagnosis of typical and atypical cutaneous leishmaniasis.Arch. Pathol. Lab. Med.2014138223524010.5858/arpa.2013‑0098‑OA 24476521
    [Google Scholar]
  3. Torres-GuerreroE. Quintanilla-CedilloM.R. Ruiz-EsmenjaudJ. ArenasR. Leishmaniasis: A review.F1000 Res.2017675010.12688/f1000research.11120.1 28649370
    [Google Scholar]
  4. ElmahallawyE.K. AlkhaldiA.A.M. SalehA.A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research.Biomed. Pharmacother.202113911167110.1016/j.biopha.2021.111671 33957562
    [Google Scholar]
  5. MignotG. BhattacharyaY. ReddyA. Ocular Leishmaniasis: A systematic review.Indian J. Ophthalmol.20216951052106010.4103/ijo.IJO_2232_20 33913831
    [Google Scholar]
  6. OryanA. AkbariM. Worldwide risk factors in leishmaniasis.Asian Pac. J. Trop. Med.201691092593210.1016/j.apjtm.2016.06.021 27794384
    [Google Scholar]
  7. OryanA. Plant-derived compounds in treatment of leishmaniasis.Majallah-i Tahqiqat-i Dampizishki-i Iran2015161119 27175144
    [Google Scholar]
  8. MannS. FrascaK. ScherrerS. Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of leishmaniasis: Current knowledge and future directions.Curr. Trop. Med. Rep.20218212113210.1007/s40475‑021‑00232‑7 33747716
    [Google Scholar]
  9. AkbariM. OryanA. HatamG. Application of nanotechnology in treatment of leishmaniasis: A Review.Acta Trop.2017172869010.1016/j.actatropica.2017.04.029 28460833
    [Google Scholar]
  10. AlvarJ. VélezI.D. BernC. HerreroM. DesjeuxP. CanoJ. JanninJ. BoerM. TeamW.L.C. Leishmaniasis worldwide and global estimates of its incidence.PLoS One201275e3567110.1371/journal.pone.0035671 22693548
    [Google Scholar]
  11. SantosS.S. de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for chagas disease, leishmaniasis and schistosomiasis: A review.Int. J. Antimicrob. Agents202055410590610.1016/j.ijantimicag.2020.105906 31987883
    [Google Scholar]
  12. RajS. SasidharanS. BalajiS.N. SaudagarP. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite.Parasitol. Res.202011972025203710.1007/s00436‑020‑06736‑x 32504119
    [Google Scholar]
  13. SinghO.P. GeddaM.R. MudavathS.L. SrivastavaO.N. SundarS. Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: For future theranostic application.Nanomedicine201914141911192710.2217/nnm‑2018‑0448 31313971
    [Google Scholar]
  14. Da SilvaE.O. BorgesP.F.C. SantanaR.B. MouraH.S.D. BarcellosJ.F.M. JensenB.B. PinheiroF.G. NaiffM.F. EspirT.T. FrancoA.M.R. Evaluation of the lymphoproliferation of mononuclear cells in cutaneous leishmaniasis patients treated with Libidibia ferrea.Acta Brasiliensis2021539710210.22571/2526‑4338560
    [Google Scholar]
  15. SaleemK. KhursheedZ. HanoC. AnjumI. AnjumS. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges.Nanomaterials2019912174910.3390/nano9121749 31818029
    [Google Scholar]
  16. Ponte-SucreA. GamarroF. DujardinJ.C. BarrettM.P. López-Vélez R. García-Hernández R. PountainA.W. Mwenechanya R. Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge.PLoS Negl. Trop. Dis.20171112e000605210.1371/journal.pntd.0006052 29240765
    [Google Scholar]
  17. YadavA. PatelM. PatelR. PlekhanovaY. ReshetilovA. ShuryginaI.A. ShuryginM.G. WypijM. GhoshS. KittureR. Nanobiotechnology in diagnosis, drug delivery and treatmentWiley-Blackwell2020
    [Google Scholar]
  18. AzimM. KhanS.A. UllahS. UllahS. AnjumS.I. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review.PLoS Negl. Trop. Dis.2021153e000909910.1371/journal.pntd.0009099 33657097
    [Google Scholar]
  19. GutiérrezV. SeabraA.B. RegueraR.M. KhandareJ. Calderón, M. New approaches from nanomedicine for treating leishmaniasis.Chem. Soc. Rev.201645115216810.1039/C5CS00674K 26487097
    [Google Scholar]
  20. ZaionczS. KhalilN.M. MainardesR.M. Exploring the role of nanoparticles in amphotericin B delivery.Curr. Pharm. Des.201723350952110.2174/1381612822666161027103640 27799043
    [Google Scholar]
  21. JamshaidH. DinF. KhanG.M. Nanotechnology based solutions for anti-leishmanial impediments: A detailed insight.J. Nanobiotechnology202119110610.1186/s12951‑021‑00853‑0 33858436
    [Google Scholar]
  22. NafariA. CheraghipourK. SepahvandM. ShahrokhiG. GabalE. MahmoudvandH. Nanoparticles: New agents toward treatment of leishmaniasis.Parasite Epidemiol. Control202010e0015610.1016/j.parepi.2020.e00156 32566773
    [Google Scholar]
  23. KammonaO. TsanaktsidouE. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis.Int. J. Pharm.202160512076110.1016/j.ijpharm.2021.120761 34081999
    [Google Scholar]
  24. De AlmeidaL. FujimuraA.T. CistiaM.L.D. Fonseca-SantosB. ImamuraK.B. MichelsP.M. ChorilliM. GraminhaM.S. Nanotechnological strategies for treatment of leishmaniasis—a review.J. Biomed. Nanotechnol.201713211713310.1166/jbn.2017.2349 29376626
    [Google Scholar]
  25. ElmiT. GholamiS. FakharM. AziziF. A review on the use of nanoparticles in the treatment.J. Mazandaran Univ. Med. Sci.201323102126133
    [Google Scholar]
  26. OliveiraS.S.C. FerreiraC.S. BranquinhaM.H. SantosA.L.S. ChaudM.V. JainS. CardosoJ.C. KovačevićA.B. SoutoE.B. SeverinoP. Overcoming multi‐resistant leishmania treatment by nanoencapsulation of potent antimicrobials.J. Chem. Technol. Biotechnol.20219682123214010.1002/jctb.6633
    [Google Scholar]
  27. de Carvalho OliveiraS.S. BranquinhaM.H. CruzM.d.S.P. dos SantosA.L.S. SangenitoL.S. Trendings of amphotericin B-loaded nanoparticles as valuable chemotherapeutic approaches against leishmaniasis.Applications of Nanobiotechnology for Neglected Tropical Diseases2021291327
    [Google Scholar]
  28. EiflerA.C. ThaxtonC.S. Biomedical nanotechnology.Springer201132533810.1007/978‑1‑61779‑052‑2_21
    [Google Scholar]
  29. KimS.M. PatelM. PatelR. PLGA core-shell nano/microparticle delivery system for biomedical application.Polymers20211320347110.3390/polym13203471 34685230
    [Google Scholar]
  30. ElmowafyE.M. TiboniM. SolimanM.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles.J. Pharm. Investig.201949434738010.1007/s40005‑019‑00439‑x
    [Google Scholar]
  31. TosyaliO.A. AllahverdiyevA. BagirovaM. AbamorE.S. AydogduM. DinparvarS. AcarT. MustafaevaZ. DermanS. Nano-co-delivery of lipophosphoglycan with soluble and autoclaved leishmania antigens into PLGA nanoparticles: Evaluation of in vitro and in vivo immunostimulatory effects against visceral leishmaniasis.Mater. Sci. Eng. C202112011168410.1016/j.msec.2020.111684 33545846
    [Google Scholar]
  32. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.2020241210.1186/s40824‑020‑00190‑7
    [Google Scholar]
  33. ChanJ.M. ValenciaP.M. ZhangL. LangerR. FarokhzadO.C. In: Cancer Nanotechnology Springer.2010163175
    [Google Scholar]
  34. El-SayK.M. El-SawyH.S. Polymeric nanoparticles: Promising platform for drug delivery.Int. J. Pharm.20175281-267569110.1016/j.ijpharm.2017.06.052 28629982
    [Google Scholar]
  35. ShakyaA.K. MadhyasthaH. Integrating biologically-inspired nanotechnology into medical practice.IGI Global2017324910.4018/978‑1‑5225‑0610‑2.ch002
    [Google Scholar]
  36. JinZ. GaoS. CuiX. SunD. ZhaoK. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines.Int. J. Pharm.201957211873110.1016/j.ijpharm.2019.118731 31669213
    [Google Scholar]
  37. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  38. SánchezA. MejíaS.P. OrozcoJ. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections.Molecules20202516376010.3390/molecules25163760 32824757
    [Google Scholar]
  39. CastroK.C. CostaJ.M. CamposM.G.N. Drug-loaded polymeric nanoparticles: A review.Int. J. Polym. Mater.202271111310.1080/00914037.2020.1798436
    [Google Scholar]
  40. ul HassanN. ChaudheryI. AhmedN. In advances in polymeric nanomaterials for biomedical applications.Elsevier2021191224
    [Google Scholar]
  41. GündayC. AnandS. GencerH.B. Munafò, S.; Moroni, L.; Fusco, A.; Donnarumma, G.; Ricci, C.; Hatir, P.C.; Türeli, N.G.; Türeli, A.E.; Mota, C.; Danti, S. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications.Drug Deliv. Transl. Res.202010370672010.1007/s13346‑020‑00736‑1 32100267
    [Google Scholar]
  42. LamS.J. WongE.H.H. BoyerC. QiaoG.G. Antimicrobial polymeric nanoparticles.Prog. Polym. Sci.201876406410.1016/j.progpolymsci.2017.07.007
    [Google Scholar]
  43. SpirescuV.A. ChircovC. GrumezescuA.M. AndronescuE. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview.Polymers (Basel)202113572410.3390/polym13050724 33673451
    [Google Scholar]
  44. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  45. WongK.H. LuA. ChenX. YangZ. Natural ingredient-based polymeric nanoparticles for cancer treatment.Molecules20202516362010.3390/molecules25163620 32784890
    [Google Scholar]
  46. ChandaranaM. CurtisA. HoskinsC. The use of nanotechnology in cardiovascular disease.Appl. Nanosci.2018871607161910.1007/s13204‑018‑0856‑z
    [Google Scholar]
  47. PechanovaO. DayarE. CebovaM. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system.Molecules20202515332210.3390/molecules25153322 32707934
    [Google Scholar]
  48. HolzingerM. Le GoffA. CosnierS. Nanomaterials for biosensing applications: A review.Front Chem.201426310.3389/fchem.2014.00063 25221775
    [Google Scholar]
  49. ElgiddawyN. RenS. YassarA. Louis-JosephA. Sauriat-DorizonH. El RoubyW.M.A. El-GendyA.O. FarghaliA.A. Korri-YoussoufiH. Dispersible conjugated polymer nanoparticles as biointerface materials for label-free bacteria detection.ACS Appl. Mater. Interfaces20201236399793999010.1021/acsami.0c08305 32805819
    [Google Scholar]
  50. BanikB.L. FattahiP. BrownJ.L. Polymeric nanoparticles: The future of nanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168227129910.1002/wnan.1364 26314803
    [Google Scholar]
  51. MallakpourS. BehranvandV. Polymeric nanoparticles: Recent development in synthesis and application.Express Polym. Lett.2016101189591310.3144/expresspolymlett.2016.84
    [Google Scholar]
  52. SurS. RathoreA. DaveV. ReddyK.R. ChouhanR.S. SadhuV. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system.Nano-Structures & Nano-Objects20192010039710.1016/j.nanoso.2019.100397
    [Google Scholar]
  53. IdreesH. ZaidiS.Z.J. SabirA. KhanR.U. ZhangX. HassanS. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications.Nanomaterials20201010197010.3390/nano10101970 33027891
    [Google Scholar]
  54. BeginesB. OrtizT. Pérez-ArandaM. Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  55. Sousa-BatistaA.J. Cerqueira-CoutinhoC. do CarmoF.S. AlbernazM.S. Santos-OliveiraR. Polycaprolactone antimony nanoparticles as drug delivery system for leishmaniasis.Am. J. Ther.2019261e12e1710.1097/MJT.0000000000000539 30601770
    [Google Scholar]
  56. SwiderE. KoshkinaO. TelJ. CruzL.J. de VriesI.J.M. SrinivasM. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications.Acta Biomater.201873385110.1016/j.actbio.2018.04.006 29653217
    [Google Scholar]
  57. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  58. ReddyY.D. A brief review on polymeric nanoparticles for drug delivery and targeting.J. Pharm. Innov.201527
    [Google Scholar]
  59. TiruwaR. A review on nanoparticles-preparation and evaluation parameters.Indian J. Pharm. Biol. Res.20164227
    [Google Scholar]
  60. ErdoğarN. AkkınS. BilensoyE. Nanocapsules for drug delivery: An updated review of the last decade.Recent Pat. Drug Deliv. Formul.201912425226610.2174/1872211313666190123153711 30674269
    [Google Scholar]
  61. FrankL.A. ContriR.V. BeckR.C.R. PohlmannA.R. GuterresS.S. Improving drug biological effects by encapsulation into polymeric nanocapsules.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157562363910.1002/wnan.1334 25641603
    [Google Scholar]
  62. RambaranT.F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects.SN Appl. Sci.202028133510.1007/s42452‑020‑3110‑8
    [Google Scholar]
  63. NeumannK. LilienkampfA. BradleyM. Responsive polymeric nanoparticles for controlled drug delivery.Polym. Int.201766121756176410.1002/pi.5471
    [Google Scholar]
  64. AbasianP. GhanavatiS. RahebiS. Nouri KhorasaniS. KhaliliS. Polymeric nanocarriers in targeted drug delivery systems: A review.Polym. Adv. Technol.202031122939295410.1002/pat.5031
    [Google Scholar]
  65. XuY. KimC.S. SaylorD.M. KooD. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories.J. Biomed. Mater. Res. B Appl. Biomater.201710561692171610.1002/jbm.b.33648 27098357
    [Google Scholar]
  66. GhitmanJ. BiruE.I. StanR. IovuH. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine.Mater. Des.202019310880510.1016/j.matdes.2020.108805
    [Google Scholar]
  67. CruchoC.I.C. BarrosM.T. Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery.Polymer201568414610.1016/j.polymer.2015.04.083
    [Google Scholar]
  68. EssaD. KondiahP.P.D. ChoonaraY.E. PillayV. The design of poly (lactide-co-glycolide) nanocarriers for medical applications.Front. Bioeng. Biotechnol.202084810.3389/fbioe.2020.00048 32117928
    [Google Scholar]
  69. KapoorD.N. BhatiaA. KaurR. SharmaR. KaurG. DhawanS. PLGA: A unique polymer for drug delivery.Ther. Deliv.201561415810.4155/tde.14.91 25565440
    [Google Scholar]
  70. MirM. AhmedN. RehmanA. Recent applications of PLGA based nanostructures in drug delivery.Colloids Surf. B Biointerfaces201715921723110.1016/j.colsurfb.2017.07.038 28797972
    [Google Scholar]
  71. ChereddyK.K. VandermeulenG. PréatV. PLGA based drug delivery systems: Promising carriers for wound healing activity.Wound Repair Regen.201624222323610.1111/wrr.12404 26749322
    [Google Scholar]
  72. RaniR. DilbaghiN. DhingraD. KumarS. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery.Int. J. Biol. Macromol.20157817317910.1016/j.ijbiomac.2015.03.070 25881957
    [Google Scholar]
  73. GuoP. LiuD. SubramanyamK. WangB. YangJ. HuangJ. AugusteD.T. MosesM.A. Nanoparticle elasticity directs tumor uptake.Nat. Commun.20189113010.1038/s41467‑017‑02588‑9 29317633
    [Google Scholar]
  74. RabanelJ.M. AounV. ElkinI. MokhtarM. HildgenP. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers.Curr. Med. Chem.201219193070310210.2174/092986712800784702 22612696
    [Google Scholar]
  75. BrionesE. Isabel ColinoC. LanaoJ.M. Delivery systems to increase the selectivity of antibiotics in phagocytic cells.J. Control. Release2008125321022710.1016/j.jconrel.2007.10.027 18077047
    [Google Scholar]
  76. PalmaE. PasquaA. GagliardiA. BrittiD. FrestaM. CoscoD. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: An overview.Materials2018117116710.3390/ma11071167 29987206
    [Google Scholar]
  77. NagavarmaB. YadavH.K. AyazA. VasudhaL. ShivakumarH. Different techniques for preparation of polymeric nanoparticles-a review.Asian J. Pharm. Clin. Res.2012531623
    [Google Scholar]
  78. ElsabahyM. WooleyK.L. Design of polymeric nanoparticles for biomedical delivery applications.Chem. Soc. Rev.20124172545256110.1039/c2cs15327k 22334259
    [Google Scholar]
  79. MorachisJ.M. MahmoudE.A. AlmutairiA. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles.Pharmacol. Rev.201264350551910.1124/pr.111.005363 22544864
    [Google Scholar]
  80. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  81. PantaP. KwonJ.S. SonA.R. LeeK.W. KimM.S. Protein drug-loaded polymeric nanoparticles.j. biomed. sci. eng.2014201410.4236/jbise.2014.710082
    [Google Scholar]
  82. BeeS.L. HamidZ.A.A. MariattiM. YahayaB.H. LimK. BeeS.T. SinL.T. Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: A review.Polym. Rev.201858349553610.1080/15583724.2018.1437547
    [Google Scholar]
  83. ChaudharyS.A. PatelD.M. PatelJ.K. PatelD.H. Emerging Technologies for Nanoparticle Manufacturing.Springer202128730010.1007/978‑3‑030‑50703‑9_12
    [Google Scholar]
  84. ArrueboM. UsonL. MianaM. Ortiz de SolorzanoI. SebastianV. LarreaA. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: Effect of passive mixing.Int. J. Nanomedicine2016113397341610.2147/IJN.S108812 27524896
    [Google Scholar]
  85. LagrecaE. OnestoV. Di NataleC. La MannaS. NettiP.A. VecchioneR. Recent advances in the formulation of PLGA microparticles for controlled drug delivery.Prog. Biomater.20209415317410.1007/s40204‑020‑00139‑y 33058072
    [Google Scholar]
  86. Mendoza-MuñozN. Alcalá-AlcalaS. Quintanar-GuerreroD. Polymer nanoparticles for nanomedicinesSpringer201687121
    [Google Scholar]
  87. MahapatroA. SinghD.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines.J. Nanobiotechnology2011915510.1186/1477‑3155‑9‑55 22123084
    [Google Scholar]
  88. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.043 22353619
    [Google Scholar]
  89. KumarG. ShafiqN. MalhotraS. Drug-loaded PLGA nanoparticles for oral administration: Fundamental issues and challenges ahead.Critical Reviews™ in Therapeutic Drug Carrier Systems201229(2)
    [Google Scholar]
  90. SharmaS. ParmarA. KoriS. SandhirR. PLGA-based nanoparticles: A new paradigm in biomedical applications.Trends Analyt. Chem.201680304010.1016/j.trac.2015.06.014
    [Google Scholar]
  91. MartinsC. SousaF. AraújoF. SarmentoB Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications.Adv. Healthc. Mater.201871170103510.1002/adhm.201701035 29171928
    [Google Scholar]
  92. RamazaniF. ChenW. van NostrumC.F. StormG. KiesslingF. LammersT. HenninkW.E. KokR.J. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges.Int. J. Pharm.20164991-235836710.1016/j.ijpharm.2016.01.020 26795193
    [Google Scholar]
  93. LocatelliE. Comes FranchiniM. Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system.J. Nanopart. Res.20121412131610.1007/s11051‑012‑1316‑4
    [Google Scholar]
  94. ZhangK. TangX. ZhangJ. LuW. LinX. ZhangY. TianB. YangH. HeH. PEG–PLGA copolymers: Their structure and structure-influenced drug delivery applications.J. Control. Release2014183778610.1016/j.jconrel.2014.03.026 24675377
    [Google Scholar]
  95. OpertiM.C. BernhardtA. GrimmS. EngelA. FigdorC.G. TagitO. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up.Int. J. Pharm.202160512080710.1016/j.ijpharm.2021.120807 34144133
    [Google Scholar]
  96. MetselaarJ.M. LammersT. Challenges in nanomedicine clinical translation.Drug Deliv. Transl. Res.202010372172510.1007/s13346‑020‑00740‑5 32166632
    [Google Scholar]
  97. DonahueN.D. AcarH. WilhelmS. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine.Adv. Drug Deliv. Rev.2019143689610.1016/j.addr.2019.04.008 31022434
    [Google Scholar]
  98. PrasannaP. KumarP. KumarS. RajanaV.K. KantV. PrasadS.R. MohanU. RavichandiranV. MandalD. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis: A review.Biomed. Pharmacother.202114111192010.1016/j.biopha.2021.111920 34328115
    [Google Scholar]
  99. AugustineR. HasanA. PrimaveraR. WilsonR.J. ThakorA.S. KevadiyaB.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components.Mater. Today Commun.20202510169210.1016/j.mtcomm.2020.101692
    [Google Scholar]
  100. OttemannB.M. HelminkA.J. ZhangW. MukadamI. WoldstadC. HilaireJ.R. LiuY. McMillanJ.M. EdagwaB.J. MosleyR.L. GarrisonJ.C. KevadiyaB.D. GendelmanH.E. Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities.Biomaterials201818517419310.1016/j.biomaterials.2018.09.018 30245386
    [Google Scholar]
  101. ToyR. PeirisP.M. GhaghadaK.B. KarathanasisE. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles.Nanomedicine20149112113410.2217/nnm.13.191 24354814
    [Google Scholar]
  102. FlorezL. HerrmannC. CramerJ.M. HauserC.P. KoynovK. LandfesterK. CrespyD. Mailänder, V. How shape influences uptake: Interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells.Small20128142222223010.1002/smll.201102002 22528663
    [Google Scholar]
  103. HuangX. TengX. ChenD. TangF. HeJ. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function.Biomaterials201031343844810.1016/j.biomaterials.2009.09.060 19800115
    [Google Scholar]
  104. DasguptaS. AuthT. GompperG. Shape and orientation matter for the cellular uptake of nonspherical particles.Nano Lett.201414268769310.1021/nl403949h 24383757
    [Google Scholar]
  105. GrafC. NordmeyerD. SengstockC. AhlbergS. DiendorfJ. RaabeJ. EppleM. KöllerM. LademannJ. VogtA. RancanF. RühlE. Shape-dependent dissolution and cellular uptake of silver nanoparticles.Langmuir20183441506151910.1021/acs.langmuir.7b03126 29272915
    [Google Scholar]
  106. AnselmoA.C. ZhangM. KumarS. VogusD.R. MenegattiS. HelgesonM.E. MitragotriS. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.ACS Nano2015933169317710.1021/acsnano.5b00147 25715979
    [Google Scholar]
  107. YiX. GaoH. Kinetics of receptor-mediated endocytosis of elastic nanoparticles.Nanoscale20179145446310.1039/C6NR07179A 27934990
    [Google Scholar]
  108. ChenY. LiL. GongL. ZhouT. LiuJ. Surface regulation towards stimuli‐responsive luminescence of ultrasmall thiolated gold nanoparticles for ratiometric imaging.Adv. Funct. Mater.20192910180694510.1002/adfm.201806945
    [Google Scholar]
  109. SharifiM. HosseinaliS.H. Hossein AlizadehR. HasanA. AttarF. SalihiA. ShekhaM.S. AmenK.M. AzizF.M. SabouryA.A. AkhtariK. TaghizadehA. HooshmandN. El-SayedM.A. FalahatiM. Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles.Talanta202021212078210.1016/j.talanta.2020.120782 32113545
    [Google Scholar]
  110. YamadaM. FooteM. ProwT.W. Therapeutic gold, silver, and platinum nanoparticles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157342844510.1002/wnan.1322 25521618
    [Google Scholar]
  111. ZhouH.S. HonmaI. KomiyamaH. HausJ.W. Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system’s synthesis and properties.J. Phys. Chem.199397489590110.1021/j100106a015
    [Google Scholar]
  112. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.Angew. Chem. Int. Ed.20145346n/a10.1002/anie.201403036 25294565
    [Google Scholar]
  113. BelfioreL. SaundersD.N. RansonM. ThurechtK.J. StormG. VineK.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities.J. Control. Release201827711310.1016/j.jconrel.2018.02.040 29501721
    [Google Scholar]
  114. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.009 24270007
    [Google Scholar]
  115. MouQ. MaY. ZhuX. YanD. A small molecule nanodrug consisting of amphiphilic targeting ligand–chemotherapy drug conjugate for targeted cancer therapy.J. Control. Release2016230344410.1016/j.jconrel.2016.03.037 27040815
    [Google Scholar]
  116. DingH. MaY. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles.Biomaterials201233235798580210.1016/j.biomaterials.2012.04.055 22607914
    [Google Scholar]
  117. PozziD. ColapicchioniV. CaraccioloG. PiovesanaS. CapriottiA.L. PalchettiS. De GrossiS. RiccioliA. AmenitschH. LaganàA. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: From nanostructure to uptake in cancer cells.Nanoscale2014652782279210.1039/c3nr05559k 24463404
    [Google Scholar]
  118. ArpagausC. PLA/PLGA nanoparticles prepared by nano spray drying.J. Pharm. Investig.201949440542610.1007/s40005‑019‑00441‑3
    [Google Scholar]
  119. LiuJ. LengP. LiuY. Oral drug delivery with nanoparticles into the gastrointestinal mucosa.Fundam. Clin. Pharmacol.2021351869610.1111/fcp.12594 32749731
    [Google Scholar]
  120. FakharM. KeighobadiM. EmamiS. Hypothesis: The potential application of doxorubicin against cutaneous leishmaniasis.Trop. Parasitol.201551697010.4103/2229‑5070.145594 25709959
    [Google Scholar]
  121. KansalS. TandonR. VermaP.R.P. DubeA. MishraP.R. Development of doxorubicin loaded novel core shell structured nanocapsules for the intervention of visceral leishmaniasis.J. Microencapsul.201330544145010.3109/02652048.2012.752532 23534494
    [Google Scholar]
  122. Al-KuraishyH.M. DahashS.L. AbassO.K. Abdul-RazaqM.M. Al-GareebA. Aesculus hippocastanum-derived extract β-Aescin and in vitro antibacterial activity.J. Microsc. Ultrastruct.202191263010.4103/JMAU.JMAU_56_19 33850709
    [Google Scholar]
  123. Van de VenH. VermeerschM. MatheeussenA. VandervoortJ. WeyenbergW. ApersS. CosP. MaesL. LudwigA. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation.Int. J. Pharm.2011420112213210.1016/j.ijpharm.2011.08.016 21864661
    [Google Scholar]
  124. Costa LimaS.A. ResendeM. SilvestreR. TavaresJ. OuaissiA. LinP.K.T. Cordeiro-da-SilvaA. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies.Nanomedicine20127121839184910.2217/nnm.12.74 22812711
    [Google Scholar]
  125. KeskinE. UcisikM.H. SucuB.O. GuzelM. Novel synthetic approaches for bisnaphthalimidopropyl (BNIP) derivatives as potential anti-parasitic agents for the treatment of leishmaniasis.Molecules20192424460710.3390/molecules24244607 31888250
    [Google Scholar]
  126. SundarS. ChakravartyJ. Liposomal amphotericin B and leishmaniasis: Dose and response.J. Glob. Infect. Dis.20102215916610.4103/0974‑777X.62886 20606972
    [Google Scholar]
  127. ShirzadiM.R. Lipsosomal amphotericin B: A review of its properties, function, and use for treatment of cutaneous leishmaniasis.Res. Rep. Trop. Med.201910111810.2147/RRTM.S200218 31118866
    [Google Scholar]
  128. de CarvalhoR.F. RibeiroI.F. Miranda-VilelaA.L. de Souza FilhoJ. MartinsO.P. de Oliveira Cintra e SilvaD. TedescoA.C. LacavaZ.G.M. BáoS.N. SampaioR.N.R. Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice.Exp. Parasitol.2013135221722210.1016/j.exppara.2013.07.008 23891944
    [Google Scholar]
  129. CoelhoA.A.S. LoureiroE.V.S. SilvaA.C.J. SilvaA.B.C. AlvesH.C. Lucianelli-JuniorD. PantojaA.V. SantosO.S. GranatoR.R. Silva-JúniorA.F. NascimentoR.M. MendonçaR.Z. LaurentinoR.V. ValentinF.N. Historical analysis of leishmaniasis cases in the transamazonian region: From 2009 to 2019.Revista Eletrônica Acervo Saúde20211311e9163e916310.25248/reas.e9163.2021
    [Google Scholar]
  130. MoreiraV.R. de JesusL.C.L. SoaresR.E.P. SilvaL.D.M. PintoB.A.S. MeloM.N. PaesA.M.A. PereiraS.R.F. Meglumine antimoniate (Glucantime) causes oxidative stress-derived DNA damage in BALB/c mice infected by Leishmania (Leishmania) infantum.Antimicrob. Agents Chemother.2017616e02360e1610.1128/AAC.02360‑16 28320726
    [Google Scholar]
  131. WantM.Y. IslamuddinM. ChouhanG. DasguptaA.K. ChattopadhyayA.P. AfrinF. A new approach for the delivery of artemisinin: Formulation, characterization, and ex-vivo antileishmanial studies.J. Colloid Interface Sci.201443225826910.1016/j.jcis.2014.06.035 25086720
    [Google Scholar]
  132. GeroldingerG. TonnerM. QuirgstJ. WalterM. De SarkarS. Machín L. Monzote L. Stolze K. Catharina Duvigneau J. Staniek K. Chatterjee M. Gille L. Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes: A possible link.Biochem. Pharmacol.202017311373710.1016/j.bcp.2019.113737 31786259
    [Google Scholar]
  133. DorloT.P.C. BalasegaramM. BeijnenJ.H. de VriesP.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis.J. Antimicrob. Chemother.201267112576259710.1093/jac/dks275 22833634
    [Google Scholar]
  134. Pinto-MartinezA.K. Rodriguez-DuránJ. Serrano-MartinX. Hernandez-RodriguezV. BenaimG. Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca2+ channel.Antimicrob. Agents Chemother.2017621e01614e01617 29061745
    [Google Scholar]
  135. MeloT.S. GattassC.R. SoaresD.C. CunhaM.R. FerreiraC. TavaresM.T. SaraivaE. Parise-FilhoR. BradenH. DelorenziJ.C. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights.Parasitol. Int.201665322723710.1016/j.parint.2016.01.001 26772973
    [Google Scholar]
  136. GhoshS. KarN. BeraT. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis.Int. J. Biol. Macromol.201693Pt A96197010.1016/j.ijbiomac.2016.09.01427645930
    [Google Scholar]
  137. ValleI.V. MachadoM.E. Araújo, C.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: An alternative approach for leishmaniasis treatment.Nanotechnology2019304545510210.1088/1361‑6528/ab373e 31365912
    [Google Scholar]
  138. BasselinM. LawrenceF. Robert-GeroM. Pentamidine uptake in Leishmania donovani and Leishmania amazonensis promastigotes and axenic amastigotes.Biochem. J.1996315263163410.1042/bj3150631 8615840
    [Google Scholar]
  139. de Macedo-SilvaS.T. UrbinaJ.A. de SouzaW. RodriguesJ.C.F. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis.PLoS One2013812e8324710.1371/journal.pone.0083247 24376670
    [Google Scholar]
  140. AfzalI. SarwarH.S. SohailM.F. VarikutiS. JahanS. AkhtarS. YasinzaiM. SatoskarA.R. ShahnazG. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis.Nanomedicine201914438740610.2217/nnm‑2018‑0038 30688557
    [Google Scholar]
  141. PokharelP. GhimireR. LamichhaneP. Efficacy and safety of paromomycin for visceral leishmaniasis: A systematic review.J. Trop. Med.2021202110.1155/2021/8629039
    [Google Scholar]
  142. CruzK.P. PatricioB.F.C. PiresV.C. AmorimM.F. PinhoA.G.S.F. QuadrosH.C. DantasD.A.S. ChavesM.H.C. FormigaF.R. RochaH.V.A. VerasP.S.T. Development and characterization of PLGA nanoparticles containing 17-DMAG, an Hsp90 inhibitor.Front Chem.2021964482710.3389/fchem.2021.644827 34055735
    [Google Scholar]
  143. AnyikaM. McMullenM. ForsbergL.K. DobrowskyR.T. BlaggB.S.J. Development of noviomimetics as C-terminal Hsp90 inhibitors.ACS Med. Chem. Lett.201671677110.1021/acsmedchemlett.5b00331 26819668
    [Google Scholar]
  144. FernándezM. Holgado M.Á. Cayero-Otero M.D. Pineda T. Yepes L.M. Gaspar D.P. Almeida A.J. Robledo S.M. Martín-Banderas L. Improved antileishmanial activity and cytotoxicity of a novel nanotherapy for N-iodomethyl-N,N-dimethyl-N-(6,6-diphenylhex-5-en-1-yl)ammonium iodide.J. Drug Deliv. Sci. Technol.20216110198810.1016/j.jddst.2020.101988
    [Google Scholar]
  145. OnoueS. NakamuraT. UchidaA. OgawaK. YuminokiK. HashimotoN. HizaA. TsukaguchiY. AsakawaT. KanT. YamadaS. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects.Eur. J. Pharm. Sci.201349445346010.1016/j.ejps.2013.05.014 23707470
    [Google Scholar]
  146. JainD. SinghA. StephenB.J. JainD. SanadhyaS. DaimaH.K. MadhyasthaH. MadhyasthaR. Nanotoxicology.CRC Press2021739610.1201/9780429299742‑4
    [Google Scholar]
  147. VinckR. NguyenL.A. MunierM. CaramelleL. KarpmanD. BarbierJ. CintratJ.-C. PruvostA. GilletD. Subcutaneous administration of the retrograde transport inhibitor Retro-2.1 formulated in a PLGA-PEG-PLGA thermosensitive hydrogel leads to a sustained release of the drug and a better control of its metabolism in vivo.2021
    [Google Scholar]
  148. MeirelesP.W. de SouzaD.P.B. RezendeM.G. BorsodiM.P.G. de OliveiraD.E. da SilvaL.C.R.P. de SouzaA.M.T. VianaG.M. RodriguesC.R. do CarmoF.A. de SousaV.P. Rossi-BergmannB. CabralL.M. Nanoparticles loaded with a new thiourea derivative: Development and in vitro evaluation against Leishmania amazonensis.Curr. Drug Deliv.202017869470210.2174/1567201817666200704132348 32621717
    [Google Scholar]
  149. Sousa-BatistaA.J. Arruda-CostaN. Rossi-BergmannB. RéM.I. Improved drug loading via spray drying of a chalcone implant for local treatment of cutaneous leishmaniasis.Drug Dev. Ind. Pharm.20184491473148010.1080/03639045.2018.1461903 29618227
    [Google Scholar]
  150. Sousa-BatistaA.J. Arruda-CostaN. EscrivaniD.O. ReynaudF. SteelP.G. Rossi-BergmannB. Single-dose treatment for cutaneous leishmaniasis with an easily synthesized chalcone entrapped in polymeric microparticles.Parasitology202014791032103710.1017/S0031182020000712 32364107
    [Google Scholar]
  151. HalderA. ShuklaD. DasS. RoyP. MukherjeeA. SahaB. Lactoferrin-modified Betulinic Acid-loaded PLGA nanoparticles are strong anti-leishmanials.Cytokine201811041241510.1016/j.cyto.2018.05.010 29784509
    [Google Scholar]
  152. SilvaM.C.P.d. BritoJ.M. FerreiraA.d.S. ValeA.A.M. SantosA.P.A.d. SilvaL.A. PereiraP.V.S. NascimentoF.R.F. NicoleteR. GuerraR.N.M. Antileishmanial and immunomodulatory effect of babassu-loaded PLGA microparticles: A useful drug target to Leishmania amazonensis infection.Evidence-Based Complementary and Alternative Medicine2018201810.1155/2018/3161045
    [Google Scholar]
  153. BarrosD. Costa LimaS.A. Cordeiro-da-SilvaA. Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in Leishmaniasis therapy.Nanomedicine201510338740310.2217/nnm.14.116 25707974
    [Google Scholar]
  154. KumarR. SahooG.C. PandeyK. DasV.N.R. DasP. Study the effects of PLGA-PEG encapsulated Amphotericin B nanoparticle drug delivery system against Leishmania donovani.Drug Deliv.201522338338810.3109/10717544.2014.891271 24601828
    [Google Scholar]
  155. VermaR. PandyaS. MisraA. Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles.J. Biomed. Nanotechnol.20117111812010.1166/jbn.2011.1230 21485832
    [Google Scholar]
  156. ScalaA. PipernoA. MicaleN. MineoP.G. AbbadessaA. RisolutiR. CastelliG. BrunoF. VitaleF. CascioA. GrassiG. “Click” on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates.J. Biomed. Mater. Res. B Appl. Biomater.201810682778278510.1002/jbm.b.34058 29219244
    [Google Scholar]
  157. KumarR. SahooG.C. PandeyK. DasV.N.R. TopnoR.K. AnsariM.Y. RanaS. DasP. Development of PLGA–PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis.Mater. Sci. Eng. C20165974875310.1016/j.msec.2015.10.083 26652429
    [Google Scholar]
  158. BiswaroL.S. GarciaM.P. da SilvaJ.R. Neira FuentesL.F. VeraA. EscobarP. AzevedoR.B. Itraconazole encapsulated PLGA-nanoparticles covered with mannose as potential candidates against leishmaniasis.J. Biomed. Mater. Res. B Appl. Biomater.2019107368068710.1002/jbm.b.34161 30091522
    [Google Scholar]
  159. Costa LimaS.A. SilvestreR. BarrosD. CunhaJ. BaltazarM.T. Dinis-OliveiraR.J. Cordeiro-da-SilvaA. Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis.Nanomedicine2014105e1021e103010.1016/j.nano.2013.12.013 24412471
    [Google Scholar]
  160. Sousa-BatistaA.J. Pacienza-LimaW. Arruda-CostaN. Falcão, C.A.B.; Ré, M.I.; Rossi-Bergmann, B. Depot subcutaneous injection with chalcone CH8-loaded poly (lactic-co-glycolic acid) microspheres as a single-dose treatment of cutaneous leishmaniasis.Antimicrob. Agents Chemother.2018623e01822e1710.1128/AAC.01822‑17 29263064
    [Google Scholar]
  161. NavaeiA. RasoolianM. MomeniA. EmamiS. RafieniaM. Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and in vitro release study.Drug Dev. Ind. Pharm.201440670171010.3109/03639045.2013.777734 23594302
    [Google Scholar]
  162. SharmaS. KumarP. JaiswalA. DubeA. GuptaS. Development and characterization of doxorubicin loaded microparticles against experimental visceral leishmaniasis.J. Biomed. Nanotechnol.20117113513610.1166/jbn.2011.1237 21485839
    [Google Scholar]
  163. HeC. YinL. TangC. YinC. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs.Biomaterials201233338569857810.1016/j.biomaterials.2012.07.063 22906606
    [Google Scholar]
  164. De MuylderG. AngK.K.H. ChenS. ArkinM.R. EngelJ.C. McKerrowJ.H. A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit.PLoS Negl. Trop. Dis.201157e125310.1371/journal.pntd.0001253 21811648
    [Google Scholar]
  165. AronsonN. HerwaldtB.L. LibmanM. PearsonR. Lopez-VelezR. WeinaP. CarvalhoE.M. EphrosM. JeronimoS. MagillA. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH).Clin. Infect. Dis.20166312e202e26410.1093/cid/ciw670 27941151
    [Google Scholar]
  166. HanF.Y. ThurechtK.J. WhittakerA.K. SmithM.T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading.Front. Pharmacol.2016718510.3389/fphar.2016.00185 27445821
    [Google Scholar]
  167. ParkK. SkidmoreS. HadarJ. GarnerJ. ParkH. OtteA. SohB.K. YoonG. YuD. YunY. LeeB.K. JiangX. WangY. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation.J. Control. Release201930412513410.1016/j.jconrel.2019.05.003 31071374
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230823094737
Loading
/content/journals/cmc/10.2174/0929867331666230823094737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test