Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Alcoholism is a global health concern. Due to its role as the principal site of ethanol metabolism, the liver endures the most significant amount of tissue damage from heavy drinking. Numerous liver lesions can result from chronic and heavy alcohol use, including steatosis, hepatitis, and fibrosis/cirrhosis. Fatty liver is caused by a redox shift from the oxidized to the reduced form of nicotinamide adenine dinucleotide (NAD+) caused by the ethanol oxidation reaction. The other molecular mechanisms related to the progression of alcohol-induced liver injury are increasing sterol regulatory element-binding protein-1 (SREBP-1) and decreasing PPAR-α activity, cell signaling pathway impairment, reactive oxygen species (ROS) accumulation, and lipid peroxidation. L. rhizomes contain a substance called curcumin, which is naturally yellow in color and is also known as turmeric yellow. Curcumin has powerful biological and pharmacological properties, including antioxidant, anti-inflammatory, antifungal, antibacterial, antitumor, and anticancer effects. It's been employed as a hepatoprotective substance. Current studies have demonstrated the ability of curcumin to prevent the activation of NF-κB in Kupffer cells endotoxins, to suppress the expression of various cytokines, chemokines, cyclooxygenase-2 (COX-2), and iNOS, as well as to modulate immune responses. The present study has shown the vital role of curcumin in a variety of hepatotoxic procedures, and summarizes those effects, focusing on the molecular insights they provide.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230815113921
2023-08-15
2025-05-13
Loading full text...

Full text loading...

References

  1. ZhaoD. ChenS. CaiJ. GuoY. SongZ. CheJ. LiuC. WuC. DingM. DengH. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.PLoS One200947e646810.1371/journal.pone.000646819649295
    [Google Scholar]
  2. YuY.D. KimK.H. LeeS.G. ChoiS.Y. KimY.C. ByunK.S. ChaI.H. ParkK.Y. ChoC.H. ChoiD.H. Hepatic differentiation from human embryonic stem cells using stromal cells.J. Surg. Res.20111702e253e26110.1016/j.jss.2011.06.03221816427
    [Google Scholar]
  3. GianniniE.G. TestaR. SavarinoV. Liver enzyme alteration: A guide for clinicians.CMAJ2005172336737910.1503/cmaj.104075215684121
    [Google Scholar]
  4. Madrigal-SantillánE. Madrigal-BujaidarE. Álvarez-GonzálezI. Sumaya-MartínezM.T. Gutiérrez-SalinasJ. BautistaM. Morales-GonzálezÁ. García-Luna y González-RubioM. Aguilar-FaisalJ.L. Morales-GonzálezJ.A. Review of natural products with hepatoprotective effects.World J. Gastroenterol.20142040147871480410.3748/wjg.v20.i40.1478725356040
    [Google Scholar]
  5. WangF.S. FanJ.G. ZhangZ. GaoB. WangH.Y. The global burden of liver disease: The major impact of China.Hepatology20146062099210810.1002/hep.2740625164003
    [Google Scholar]
  6. BoschF.X. RibesJ. DíazM. ClériesR. Primary liver cancer: Worldwide incidence and trends.Gastroenterology20041275S5S1610.1053/j.gastro.2004.09.01115508102
    [Google Scholar]
  7. YounossiZ.M. Non-alcoholic fatty liver disease - A global public health perspective.J. Hepatol.201970353154410.1016/j.jhep.2018.10.03330414863
    [Google Scholar]
  8. MurielP. The liver: General aspects and epidemiology.Liver Pathophysiology.Elsevier201732210.1016/B978‑0‑12‑804274‑8.00001‑1
    [Google Scholar]
  9. FisherK. VuppalanchiR. SaxenaR. Drug-induced liver injury.Arch. Pathol. Lab. Med.2015139787688710.5858/arpa.2014‑0214‑RA26125428
    [Google Scholar]
  10. NavarroV.J. SeniorJ.R. Drug-related hepatotoxicity.N. Engl. J. Med.2006354773173910.1056/NEJMra05227016481640
    [Google Scholar]
  11. LeesB. MeredithL.R. KirklandA.E. BryantB.E. SquegliaL.M. Effect of alcohol use on the adolescent brain and behavior.Pharmacol. Biochem. Behav.202019217290610.1016/j.pbb.2020.17290632179028
    [Google Scholar]
  12. SuwanwelaC. PoshyachindaV. Drug abuse in Asia.Bull. Narc.1986381-241533535959
    [Google Scholar]
  13. AnguloP. Nonalcoholic fatty liver disease.N. Engl. J. Med.2002346161221123110.1056/NEJMra01177511961152
    [Google Scholar]
  14. BellentaniS. SaccoccioG. MasuttiF. CrocèL.S. BrandiG. SassoF. CristaniniG. TiribelliC. Prevalence of and risk factors for hepatic steatosis in Northern Italy.Ann. Intern. Med.2000132211211710.7326/0003‑4819‑132‑2‑200001180‑0000410644271
    [Google Scholar]
  15. LieberC.S. Alcoholic fatty liver: Its pathogenesis and mechanism of progression to inflammation and fibrosis.Alcohol200434191910.1016/j.alcohol.2004.07.00815670660
    [Google Scholar]
  16. de AlwisN.M.W. DayC.P. Genetics of alcoholic liver disease and nonalcoholic fatty liver disease.Semin. Liver Dis.20072714454
    [Google Scholar]
  17. LieberC.S. DeCarliL.M. SchmidR. Effect of ethanol on fatty acid metabolism in liver slices.Biochem. Biophys. Res. Commun.19591630230610.1016/0006‑291X(59)90043‑9
    [Google Scholar]
  18. LieberC.S. SchmidR. The effect of ethanol on fatty acid metabolism; stimulation of hepatic fatty acid synthesis in vitro.J. Clin. Invest.196140239439910.1172/JCI10426613761991
    [Google Scholar]
  19. NiemeläO. ParkkilaS. Ylä-HerttualaS. VillanuevaJ. RuebnerB. HalstedC.H. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease.Hepatology19952241208121210.1016/0270‑9139(95)90630‑47557872
    [Google Scholar]
  20. NiemeläO. JuvonenT. ParkkilaS. Immunohistochemical demonstration of acetaldehyde-modified epitopes in human liver after alcohol consumption.J. Clin. Invest.19918741367137410.1172/JCI1151411707062
    [Google Scholar]
  21. IsraelY. HurwitzE. NiemeläO. ArnonR. Monoclonal and polyclonal antibodies against acetaldehyde-containing epitopes in acetaldehyde-protein adducts.Proc. Natl. Acad. Sci.198683207923792710.1073/pnas.83.20.79232429322
    [Google Scholar]
  22. ViitalaK. MakkonenK. IsraelY. LehtimäkiT. JaakkolaO. KoivulaT. BlakeJ.E. NiemeläO. Autoimmune responses against oxidant stress and acetaldehyde-derived epitopes in human alcohol consumers.Alcohol. Clin. Exp. Res.20002471103110910.1111/j.1530‑0277.2000.tb04656.x10924016
    [Google Scholar]
  23. TangW.C. ChangY.W. CheM. WangM.H. LaiK.K. FuegerP.T. HuangW. LinS.B. LaiK.K.Y. Thioacetamide-induced norepinephrine production by hepatocytes is associated with hepatic stellate cell activation and liver fibrosis.Curr. Mol. Pharmacol.202215245446110.2174/187446721466621041214441633845730
    [Google Scholar]
  24. ChanceB. SiesH. BoverisA. Hydroperoxide metabolism in mammalian organs.Physiol. Rev.197959352760510.1152/physrev.1979.59.3.52737532
    [Google Scholar]
  25. LIEBERCS. Metabolism of ethanol and alcoholism: Racial and acquired factors.Ann. Intern. Med.1972762326327
    [Google Scholar]
  26. LieberC.S. DeCarliL.M. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo.J. Pharmacol. Exp. Ther.197218122792874402282
    [Google Scholar]
  27. LieberC.S. Cytochrome P-4502E1: Its physiological and pathological role.Physiol. Rev.199777251754410.1152/physrev.1997.77.2.5179114822
    [Google Scholar]
  28. HanssonT. TindbergN. Ingelman-SundbergM. Ko¨hlerC. Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system.Neuroscience199034245146310.1016/0306‑4522(90)90154‑V2333153
    [Google Scholar]
  29. De WaziersI. GarlattiM. BouguetJ. BeauneP.H. BaroukiR. Insulin down-regulates cytochrome P450 2B and 2E expression at the post-transcriptional level in the rat hepatoma cell line.Mol. Pharmacol.19954734744797700245
    [Google Scholar]
  30. PengH-M. CoonM.J. Regulation of rabbit cytochrome P450 2E1 expression in HepG2 cells by insulin and thyroid hormone.Mol. Pharmacol.19985447407479765518
    [Google Scholar]
  31. TereliusY. Norsten-HöögC. CronholmT. Ingelman-SundbergM. Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1).Biochem. Biophys. Res. Commun.1991179168969410.1016/0006‑291X(91)91427‑E1822117
    [Google Scholar]
  32. HarveyA. Strategies for discovering drugs from previously unexplored natural products.Drug Discov. Today20005729430010.1016/S1359‑6446(00)01511‑710856912
    [Google Scholar]
  33. GordalizaM. Natural products as leads to anticancer drugs.Clin. Transl. Oncol.200791276777610.1007/s12094‑007‑0138‑918158980
    [Google Scholar]
  34. ZhangA. SunH. WangX. Recent advances in natural products from plants for treatment of liver diseases.Eur. J. Med. Chem.20136357057710.1016/j.ejmech.2012.12.06223567947
    [Google Scholar]
  35. XiaoJ. SoK.F. LiongE.C. TipoeG.L. Recent advances in the herbal treatment of non-alcoholic Fatty liver disease.J. Tradit. Complement. Med.201332889410.4103/2225‑4110.11041124716162
    [Google Scholar]
  36. KimM.S. KungS. GrewalT. RoufogalisB.D. Methodologies for investigating natural medicines for the treatment of nonalcoholic fatty liver disease (NAFLD).Curr. Pharm. Biotechnol.201213227829110.2174/13892011279909531021470125
    [Google Scholar]
  37. PullakhandamR. SrinivasP.N.B.S. NairM.K. ReddyG.B. Binding and stabilization of transthyretin by curcumin.Arch. Biochem. Biophys.2009485211511910.1016/j.abb.2009.02.01319268650
    [Google Scholar]
  38. MartinR.C.G. AiyerH.S. MalikD. LiY. Effect on pro-inflammatory and antioxidant genes and bioavailable distribution of whole turmeric vs. curcumin: Similar root but different effects.Food Chem. Toxicol.201250222723110.1016/j.fct.2011.10.07022079310
    [Google Scholar]
  39. LiM. ZhangZ. HillD.L. WangH. ZhangR. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway.Cancer Res.20076751988199610.1158/0008‑5472.CAN‑06‑306617332326
    [Google Scholar]
  40. GuptaS.C. KismaliG. AggarwalB.B. Curcumin, a component of turmeric: From farm to pharmacy.Biofactors201339121310.1002/biof.107923339055
    [Google Scholar]
  41. BagchiA. Extraction of curcumin IOSR journal of environmental science.Toxicol. Food Tech.201213116
    [Google Scholar]
  42. ShehzadA. LeeY.S. Curcumin: Multiple molecular targets mediate multiple pharmacological actions: A review.Drugs Future201035211310.1358/dof.2010.35.2.1426640
    [Google Scholar]
  43. AggarwalB.B. KumarA. BhartiA.C. Anticancer potential of curcumin: Preclinical and clinical studies.Anticancer Res.2003231A3639812680238
    [Google Scholar]
  44. GoelA. KunnumakkaraA.B. AggarwalB.B. Curcumin as “Curecumin”: From kitchen to clinic.Biochem. Pharmacol.200875478780910.1016/j.bcp.2007.08.01617900536
    [Google Scholar]
  45. HuangM.T. MaW. LuY.P. ChangR.L. FisherC. ManchandP.S. NewmarkH.L. ConneyA.H. YouM. Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetateinduced tumor promotion.Carcinogenesis199516102493249710.1093/carcin/16.10.24937586157
    [Google Scholar]
  46. LeclercqI.A. FarrellG.C. SempouxC. PeñaA. HorsmansY. Curcumin inhibits NF-κB activation and reduces the severity of experimental steatohepatitis in mice.J. Hepatol.200441692693410.1016/j.jhep.2004.08.01015582125
    [Google Scholar]
  47. AhsanH. ParveenN. KhanN.U. HadiS.M. Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin.Chem. Biol. Interact.1999121216117510.1016/S0009‑2797(99)00096‑410418962
    [Google Scholar]
  48. BonfantiR. MusumeciT. RussoC. PellitteriR. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia.Eur. J. Pharmacol.2017796626810.1016/j.ejphar.2016.11.03827889433
    [Google Scholar]
  49. GuptaS.C. PatchvaS. KohW. AggarwalB.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities.Clin. Exp. Pharmacol. Physiol.201239328329910.1111/j.1440‑1681.2011.05648.x22118895
    [Google Scholar]
  50. HeidariZ. DaeiM. BoozariM. JamialahmadiT. SahebkarA. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence.Phytother. Res.20223641442145810.1002/ptr.735034904764
    [Google Scholar]
  51. KhayatanD. RazaviS.M. ArabZ.N. NiknejadA.H. NouriK. MomtazS. GumprichtE. JamialahmadiT. AbdolghaffariA.H. BarretoG.E. SahebkarA. Protective effects of curcumin against traumatic brain injury.Biomed. Pharmacother.202215411362110.1016/j.biopha.2022.11362136055110
    [Google Scholar]
  52. Mokhtari-ZaerA. MarefatiN. AtkinS.L. ButlerA.E. SahebkarA. The protective role of curcumin in myocardial ischemia–reperfusion injury.J. Cell. Physiol.2019234121422210.1002/jcp.2684829968913
    [Google Scholar]
  53. Abbas MomtaziA. SahebkarA. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile.Curr. Pharm. Des.201622284386439710.2174/138161282266616052711350127229723
    [Google Scholar]
  54. ParsamaneshN. MoossaviM. BahramiA. ButlerA.E. SahebkarA. Therapeutic potential of curcumin in diabetic complications.Pharmacol. Res.201813618119310.1016/j.phrs.2018.09.01230219581
    [Google Scholar]
  55. SahebkarA. Molecular mechanisms for curcumin benefits against ischemic injury.Fertil. Steril.2010945e75e7610.1016/j.fertnstert.2010.07.107120797714
    [Google Scholar]
  56. FehlD.J. AhmedM. Curcumin promotes the oncoltyic capacity of vesicular stomatitis virus for the treatment of prostate cancers.Virus Res.2017228142310.1016/j.virusres.2016.10.02027865863
    [Google Scholar]
  57. ChangX.-R. WangL. LiJ. WuD.-S. Analysis of anti-depressant potential of curcumin against depression induced male albino wistar rats.Brain Res.2016164221925
    [Google Scholar]
  58. ChoudharyK.M. MishraA. PoroikovV.V. GoelR.K. Ameliorative effect of Curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice.Eur. J. Pharmacol.20137041-3334010.1016/j.ejphar.2013.02.01223461849
    [Google Scholar]
  59. AndradeM.C. RibeiroA.P.D. DovigoL.N. BrunettiI.L. GiampaoloE.T. BagnatoV.S. PavarinaA.C. Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp.Arch. Oral Biol.201358220021010.1016/j.archoralbio.2012.10.01123153629
    [Google Scholar]
  60. SamarghandianS. Azimi-NezhadM. FarkhondehT. SaminiF. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.Biomed. Pharmacother.20178722322910.1016/j.biopha.2016.12.10528061405
    [Google Scholar]
  61. ChaiH. YanS. LinP. LumsdenA.B. YaoQ. ChenC. Curcumin blocks HIV protease inhibitor ritonavir-induced vascular dysfunction in porcine coronary arteries.J. Am. Coll. Surg.2005200682083010.1016/j.jamcollsurg.2005.02.03015922191
    [Google Scholar]
  62. KimK. KimK.H. KimH.Y. ChoH.K. SakamotoN. CheongJ. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway.FEBS Lett.2010584470771210.1016/j.febslet.2009.12.01920026048
    [Google Scholar]
  63. KutluayS.B. DoroghaziJ. RoemerM.E. TriezenbergS.J. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity.Virology2008373223924710.1016/j.virol.2007.11.02818191976
    [Google Scholar]
  64. ChenD.Y. ShienJ.H. TileyL. ChiouS.S. WangS.Y. ChangT.J. LeeY-J. ChanK-W. HsuW-L. Curcumin inhibits influenza virus infection and haemagglutination activity.Food Chem.201011941346135110.1016/j.foodchem.2009.09.011
    [Google Scholar]
  65. PrustyB.K. DasB.C. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin.Int. J. Cancer2005113695196010.1002/ijc.2066815514944
    [Google Scholar]
  66. HoltP.R. KatzS. KirshoffR. Curcumin therapy in inflammatory bowel disease: A pilot study.Dig. Dis. Sci.200550112191219310.1007/s10620‑005‑3032‑816240238
    [Google Scholar]
  67. PrasadS. TyagiA.K. Curcumin and its analogues: A potential natural compound against HIV infection and AIDS.Food Funct.20156113412341910.1039/C5FO00485C26404185
    [Google Scholar]
  68. DolaiS. ShiW. CorboC. SunC. AverickS. ObeysekeraD. FaridM. AlonsoA. BanerjeeP. RajaK. “Clicked” sugar-curcumin conjugate: Modulator of amyloid-β and tau peptide aggregation at ultralow concentrations.ACS Chem. Neurosci.201121269469910.1021/cn200088r22860163
    [Google Scholar]
  69. HasanzadehS. ReadM.I. BlandA.R. MajeedM. JamialahmadiT. SahebkarA. Curcumin: An inflammasome silencer.Pharmacol. Res.202015910492110.1016/j.phrs.2020.10492132464325
    [Google Scholar]
  70. Momtazi-BorojeniA.A. HaftcheshmehS.M. EsmaeiliS.A. JohnstonT.P. AbdollahiE. SahebkarA. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.Autoimmun. Rev.201817212513510.1016/j.autrev.2017.11.01629180127
    [Google Scholar]
  71. PengY. AoM. DongB. JiangY. YuL. ChenZ. HuC. XuR. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures.Drug Des. Devel. Ther.2021154503452510.2147/DDDT.S32737834754179
    [Google Scholar]
  72. AnandP. ThomasS.G. KunnumakkaraA.B. SundaramC. HarikumarK.B. SungB. TharakanS.T. MisraK. PriyadarsiniI.K. RajasekharanK.N. AggarwalB.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature.Biochem. Pharmacol.200876111590161110.1016/j.bcp.2008.08.00818775680
    [Google Scholar]
  73. PanM.H. Lin-ShiauS.Y. LinJ.K. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NFκB activation in macrophages.Biochem. Pharmacol.200060111665167610.1016/S0006‑2952(00)00489‑511077049
    [Google Scholar]
  74. PanY. ZhuG. WangY. CaiL. CaiY. HuJ. LiY. YanY. WangZ. LiX. WeiT. LiangG. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart.J. Nutr. Biochem.201324114615510.1016/j.jnutbio.2012.03.01222819547
    [Google Scholar]
  75. KhannaD. SethiG. AhnK. PandeyM. KunnumakkaraA. SungB. AggarwalA. AggarwalB. Natural products as a gold mine for arthritis treatment.Curr. Opin. Pharmacol.20077334435110.1016/j.coph.2007.03.00217475558
    [Google Scholar]
  76. BakhshiJ. WeinsteinL. PoksayK.S. NishinagaB. BredesenD.E. RaoR.V. Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: Effect of curcumin.Apoptosis200813790491410.1007/s10495‑008‑0221‑x18493855
    [Google Scholar]
  77. KunnumakkaraA.B. GuhaS. KrishnanS. DiagaradjaneP. GelovaniJ. AggarwalB.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products.Cancer Res.20076783853386110.1158/0008‑5472.CAN‑06‑425717440100
    [Google Scholar]
  78. HuangM.T. WangZ.Y. GeorgiadisC.A. LaskinJ.D. ConneyA.H. Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene.Carcinogenesis199213112183218610.1093/carcin/13.11.21831423891
    [Google Scholar]
  79. MohajeriM. SahebkarA. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review.Crit. Rev. Oncol. Hematol.2018122305110.1016/j.critrevonc.2017.12.00529458788
    [Google Scholar]
  80. SethiG. SungB. AggarwalB.B. The role of curcumin in modern medicine.Herbal Drugs: Ethnomedicine to Modern Medicine.Berlin, HeidelbergSpringer20099711310.1007/978‑3‑540‑79116‑4_7
    [Google Scholar]
  81. AngeloL.S. KurzrockR. Turmeric and green tea: A recipe for the treatment of B-chronic lymphocytic leukemia.Clin. Cancer Res.20091541123112510.1158/1078‑0432.CCR‑08‑279119228716
    [Google Scholar]
  82. ChanW.H. WuC.C. YuJ.S. Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells.J. Cell. Biochem.200390232733810.1002/jcb.1063814505349
    [Google Scholar]
  83. LiuQ. LooW.T.Y. SzeS.C.W. TongY. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription.Phytomedicine2009161091692210.1016/j.phymed.2009.04.00819524420
    [Google Scholar]
  84. RavindranJ. PrasadS. AggarwalB.B. Curcumin and cancer cells: How many ways can curry kill tumor cells selectively?AAPS J.200911349551010.1208/s12248‑009‑9128‑x19590964
    [Google Scholar]
  85. KangQ. ChenA. Curcumin suppresses expression of low-density lipoprotein (LDL) receptor, leading to the inhibition of LDL-induced activation of hepatic stellate cells.Br. J. Pharmacol.200915781354136710.1111/j.1476‑5381.2009.00261.x19594758
    [Google Scholar]
  86. ChenH.W. HuangH.C. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells.Br. J. Pharmacol.199812461029104010.1038/sj.bjp.07019149720770
    [Google Scholar]
  87. AhmedT. PathakR. MustafaM. KarR. TripathiA.K. AhmedR.S. BanerjeeB.D. Ameliorating effect of N-acetylcysteine and curcumin on pesticide-induced oxidative DNA damage in human peripheral blood mononuclear cells.Environ. Monit. Assess.20111791-429329910.1007/s10661‑010‑1736‑521049288
    [Google Scholar]
  88. SahebkarA. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis.Phytother. Res.201428563364210.1002/ptr.504523922235
    [Google Scholar]
  89. WangN.P. WangZ.F. TootleS. PhilipT. ZhaoZ.Q. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction.Br. J. Pharmacol.201216771550156210.1111/j.1476‑5381.2012.02109.x22823335
    [Google Scholar]
  90. ShahB.H. NawazZ. PertaniS.A. RoomiA. MahmoodH. SaeedS.A. GilaniA.H. Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling.Biochem. Pharmacol.19995871167117210.1016/S0006‑2952(99)00206‑310484074
    [Google Scholar]
  91. SwamyA. GulliayaS. ThippeswamyA. KotiB. ManjulaD. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats.Indian J. Pharmacol.2012441737710.4103/0253‑7613.9187122345874
    [Google Scholar]
  92. LeeW.H. LooC.Y. BebawyM. LukF. MasonR. RohanizadehR. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century.Curr. Neuropharmacol.201311433837810.2174/1570159X1131104000224381528
    [Google Scholar]
  93. LimG.P. ChuT. YangF. BeechW. FrautschyS.A. ColeG.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J. Neurosci.200121218370837710.1523/JNEUROSCI.21‑21‑08370.200111606625
    [Google Scholar]
  94. BaumL. LamC.W.K. CheungS.K.K. KwokT. LuiV. TsohJ. LamL. LeungV. HuiE. NgC. WooJ. ChiuH.F.K. GogginsW.B. ZeeB.C.Y. ChengK.F. FongC.Y.S. WongA. MokH. ChowM.S.S. HoP.C. IpS.P. HoC.S. YuX.W. LaiC.Y.L. ChanM.H. SzetoS. ChanI.H.S. MokV. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease.J. Clin. Psychopharmacol.200828111011310.1097/jcp.0b013e318160862c18204357
    [Google Scholar]
  95. YangF. LimG.P. BegumA.N. UbedaO.J. SimmonsM.R. AmbegaokarS.S. ChenP.P. KayedR. GlabeC.G. FrautschyS.A. ColeG.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo.J. Biol. Chem.200528075892590110.1074/jbc.M40475120015590663
    [Google Scholar]
  96. KimD.S.H.L. ParkS.Y. KimJ.Y. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from βA(1–42) insult.Neurosci. Lett.20013031576110.1016/S0304‑3940(01)01677‑911297823
    [Google Scholar]
  97. ArunN. NaliniN. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats.Plant Foods Hum. Nutr.2002571415210.1023/A:101310652782911855620
    [Google Scholar]
  98. KuhadA. ChopraK. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences.Eur. J. Pharmacol.20075761-3344210.1016/j.ejphar.2007.08.00117822693
    [Google Scholar]
  99. Lukita-AtmadjaW. ItoY. BakerG.L. McCuskeyR.S. Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin.Shock200217539940310.1097/00024382‑200205000‑0001012022761
    [Google Scholar]
  100. ČernýD. LekićN. VáňováK. MuchováL. HořínekA. KmoníčkováE. ZídekZ. KameníkováL. FarghaliH. Hepatoprotective effect of curcumin in lipopolysaccharide/-galactosamine model of liver injury in rats: Relationship to HO-1/CO antioxidant system.Fitoterapia201182578679110.1016/j.fitote.2011.04.00321545828
    [Google Scholar]
  101. MokdadA.H. MarksJ.S. StroupD.F. GerberdingJ.L. Actual causes of death in the United States, 2000.JAMA2004291101238124510.1001/jama.291.10.123815010446
    [Google Scholar]
  102. ThurszM.R. RichardsonP. AllisonM. AustinA. BowersM. DayC.P. DownsN. GleesonD. MacGilchristA. GrantA. HoodS. MassonS. McCuneA. MellorJ. O’GradyJ. PatchD. RatcliffeI. RoderickP. StantonL. VergisN. WrightM. RyderS. ForrestE.H. Prednisolone or pentoxifylline for alcoholic hepatitis.N. Engl. J. Med.2015372171619162810.1056/NEJMoa141227825901427
    [Google Scholar]
  103. O’SheaR.S. DasarathyS. McCulloughA.J. Alcoholic liver disease.Hepatology201051130732810.1002/hep.2325820034030
    [Google Scholar]
  104. TorruellasC. FrenchS.W. MediciV. Diagnosis of alcoholic liver disease.World J. Gastroenterol.20142033116841169910.3748/wjg.v20.i33.1168425206273
    [Google Scholar]
  105. YehM.M. BruntE.M. Pathological features of fatty liver disease.Gastroenterology2014147475476410.1053/j.gastro.2014.07.05625109884
    [Google Scholar]
  106. CrabbD.W. LiangpunsakulS. Alcohol and lipid metabolism.J. Gastroenterol. Hepatol.200621s3S56S6010.1111/j.1440‑1746.2006.04582.x16958674
    [Google Scholar]
  107. YuS. RaoS. ReddyJ.K. Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis.Curr. Mol. Med.20033656157210.2174/156652403347953714527087
    [Google Scholar]
  108. GalliA. PinaireJ. FischerM. DorrisR. CrabbD.W. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver.J. Biol. Chem.20012761687510.1074/jbc.M00879120011022051
    [Google Scholar]
  109. HardwickJ.P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases.Biochem. Pharmacol.200875122263227510.1016/j.bcp.2008.03.00418433732
    [Google Scholar]
  110. AoyamaT. PetersJ.M. IritaniN. NakajimaT. FurihataK. HashimotoT. GonzalezF.J. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha).J. Biol. Chem.1998273105678568410.1074/jbc.273.10.56789488698
    [Google Scholar]
  111. YouM. FischerM. DeegM.A. CrabbD.W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP).J. Biol. Chem.200227732293422934710.1074/jbc.M20241120012036955
    [Google Scholar]
  112. WangT. YangP. ZhanY. XiaL. HuaZ. ZhangJ. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice.Toxicology20133142-319320110.1016/j.tox.2013.09.00924144995
    [Google Scholar]
  113. ThomesP.G. OsnaN.A. DavisJ.S. DonohueT.M.Jr Cellular steatosis in ethanol oxidizing-HepG2 cells is partially controlled by the transcription factor, early growth response-1.Int. J. Biochem. Cell Biol.201345245446310.1016/j.biocel.2012.10.00223103837
    [Google Scholar]
  114. Sharara-ChamiR.I. ZhouY. EbertS. PacakK. OzcanU. MajzoubJ.A. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice.Int. J. Biochem. Cell Biol.201244690591310.1016/j.biocel.2012.02.01622405854
    [Google Scholar]
  115. GalliganJ.J. SmathersR.L. ShearnC.T. FritzK.S. BackosD.S. JiangH. FranklinC.C. OrlickyD.J. MacLeanK.N. PetersenD.R. Oxidative stress and the ER stress response in a murine model for early-stage alcoholic liver disease.J. Toxicol.2012201211210.1155/2012/20759422829816
    [Google Scholar]
  116. YangL. WuD. WangX. CederbaumA.I. Cytochrome P4502E1, oxidative stress, JNK, and autophagy in acute alcohol-induced fatty liver.Free Radic. Biol. Med.20125351170118010.1016/j.freeradbiomed.2012.06.02922749809
    [Google Scholar]
  117. JiC. KaplowitzN. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.Gastroenterology200312451488149910.1016/S0016‑5085(03)00276‑212730887
    [Google Scholar]
  118. YouM. MatsumotoM. PacoldC.M. ChoW.K. CrabbD.W. The role of AMP-activated protein kinase in the action of ethanol in the liver.Gastroenterology200412761798180810.1053/j.gastro.2004.09.04915578517
    [Google Scholar]
  119. LongY.C. ZierathJ.R. AMP-activated protein kinase signaling in metabolic regulation.J. Clin. Invest.200611671776178310.1172/JCI2904416823475
    [Google Scholar]
  120. LieberC.S. LeoM.A. WangX. DeCarliL.M. Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1α in rats.Biochem. Biophys. Res. Commun.20083701444810.1016/j.bbrc.2008.03.00518342626
    [Google Scholar]
  121. NishiyamaY. GodaN. KanaiM. NiwaD. OsanaiK. YamamotoY. Senoo-MatsudaN. JohnsonR.S. MiuraS. KabeY. SuematsuM. HIF-1α induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice.J. Hepatol.201256244144710.1016/j.jhep.2011.07.02421896344
    [Google Scholar]
  122. ColmeneroJ. BatallerR. Sancho-BruP. BellotP. MiquelR. MorenoM. JaresP. BoschJ. ArroyoV. CaballeríaJ. GinèsP. Hepatic expression of candidate genes in patients with alcoholic hepatitis: Correlation with disease severity.Gastroenterology2007132268769710.1053/j.gastro.2006.12.03617258719
    [Google Scholar]
  123. XuA. WangY. KeshawH. XuL.Y. LamK.S.L. CooperG.J.S. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice.J. Clin. Invest.200311219110010.1172/JCI20031779712840063
    [Google Scholar]
  124. DehkordiF.R. RoghaniM. BaluchnejadmojaradT. The effect of curcumin on serum level of aspartate and alanine amoinotransferase and cardiac level of oxidative stress markers in diabetic rats.Pajoohandeh J.20121711825
    [Google Scholar]
  125. NanjiA.A. JokelainenK. TipoeG.L. RahemtullaA. ThomasP. DannenbergA.J. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-κB-dependent genes.Am. J. Physiol. Gastrointest. Liver Physiol.20032842G321G32710.1152/ajpgi.00230.200212388178
    [Google Scholar]
  126. LeeH.I. McGregorR.A. ChoiM.S. SeoK.I. JungU.J. YeoJ. KimM.J. LeeM.K. Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK.Life Sci.20139318-1969369910.1016/j.lfs.2013.09.01424063989
    [Google Scholar]
  127. RongS. ZhaoY. BaoW. XiaoX. WangD. NusslerA.K. YanH. YaoP. LiuL. Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity.Phytomedicine201219654555010.1016/j.phymed.2011.12.00622445643
    [Google Scholar]
  128. DongW.G. XiongZ.E. WangB. TongQ. LiZ. Curcumin attenuates chronic ethanol-induced liver injury by inhibition of oxidative stress via mitogen-activated protein kinase/nuclear factor E2-related factor 2 pathway in mice.Pharmacogn. Mag.2015114470771510.4103/0973‑1296.16555626600714
    [Google Scholar]
  129. VaratharajaluR. GarigeM. LeckeyL.C. Reyes-GordilloK. ShahR. LakshmanM.R. Protective role of dietary curcumin in the prevention of the oxidative stress induced by chronic alcohol with respect to hepatic injury and antiatherogenic markers.Oxid. Med. Cell. Longev.2016201611010.1155/2016/501746026881029
    [Google Scholar]
  130. LuC. ZhangF. XuW. WuX. LianN. JinH. ChenQ. ChenL. ShaoJ. WuL. LuY. ZhengS. Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes.IUBMB Life201567864565810.1002/iub.140926305715
    [Google Scholar]
  131. GuoC. MaJ. ZhongQ. ZhaoM. HuT. ChenT. QiuL. WenL. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.Toxicol. Appl. Pharmacol.20173281910.1016/j.taap.2017.05.00128476407
    [Google Scholar]
  132. NanjiA.A. JokelainenK. RahemtullaA. MiaoL. FogtF. MatsumotoH. TahanS.R. SuG.L. Activation of nuclear factor kappa B and cytokine imbalance in experimental alcoholic liver disease in the rat.Hepatology199930493494310.1002/hep.51030040210498645
    [Google Scholar]
  133. BishtS. KhanM.A. BekhitM. BaiH. CornishT. MizumaM. RudekM.A. ZhaoM. MaitraA. RayB. LahiriD. MaitraA. AndersR.A. A polymeric nanoparticle formulation of curcumin (NanoCurc™) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation.Lab. Invest.20119191383139510.1038/labinvest.2011.8621691262
    [Google Scholar]
  134. CharoensukL. PinlaorP. PrakobwongS. HirakuY. LaothongU. RuangjirachupornW. YongvanitP. PinlaorS. Curcumin induces a nuclear factor-erythroid 2-related factor 2-driven response against oxidative and nitrative stress after praziquantel treatment in liver fluke-infected hamsters.Int. J. Parasitol.201141661562610.1016/j.ijpara.2010.12.01121256849
    [Google Scholar]
  135. BassiounyA.R. ZakyA. FawkyF. KandeelK.M. Alteration of AP-endonuclease1 expression in curcumin-treated fibrotic rats.Ann. Hepatol.201110451653010.1016/S1665‑2681(19)31521‑221911894
    [Google Scholar]
  136. NakayamaN. NakamuraT. OkadaH. IwakiS. SobelB.E. FujiiS. Modulators of induction of plasminogen activator inhibitor type-1 in HepG2 cells by transforming growth factor-β.Coron. Artery Dis.201122746847810.1097/MCA.0b013e32834a381721968503
    [Google Scholar]
  137. QiX. ZhengS. MaM. LianN. WangH. ChenL. SongA. LuC. ZhengS. JinH. curcumol suppresses CCF-mediated hepatocyte senescence through blocking LC3B–Lamin B1 interaction in alcoholic fatty liver disease.Front. Pharmacol.20221391282510.3389/fphar.2022.91282535837283
    [Google Scholar]
  138. LeeM. NamS.H. YoonH.G. KimS. YouY. ChoiK.C. LeeY.H. LeeJ. ParkJ. JunW. Fermented Curcuma longa L. prevents alcoholic fatty liver disease in mice by regulating CYP2E1, SREBP-1c, and PPAR- α.J. Med. Food202225445646310.1089/jmf.2021.K.009835438556
    [Google Scholar]
  139. NwozoS.O. OsunmadewaD.A. OyinloyeB.E. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.J. Integr. Med.2014121596510.1016/S2095‑4964(14)60006‑624461596
    [Google Scholar]
  140. SamuhasaneetoS. Thong-NgamD. KulaputanaO. SuyasunanontD. KlaikeawN. Curcumin decreased oxidative stress, inhibited NF-kappaB activation, and improved liver pathology in ethanol-induced liver injury in rats.J. Biomed. Biotechnol.20092009981963
    [Google Scholar]
  141. López-LázaroM. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent.Mol. Nutr. Food Res.200852S1S103S12710.1002/mnfr.20070023818496811
    [Google Scholar]
  142. ProgramN.T. NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1)(major component 79%-85% curcumin, CAS No. 458-37-7) in F344/N rats and B6C3F1 mice (feed studies).Natl. Toxicol. Program Tech. Rep. Ser.1993427127512616304
    [Google Scholar]
  143. BubiciC. PapaS. DeanK. FranzosoG. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: Molecular basis and biological significance.Oncogene200625516731674810.1038/sj.onc.120993617072325
    [Google Scholar]
  144. ZhongW. QianK. XiongJ. MaK. WangA. ZouY. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling.Biomed. Pharmacother.20168330231310.1016/j.biopha.2016.06.03627393927
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230815113921
Loading
/content/journals/cmc/10.2174/0929867331666230815113921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test