Skip to content
2000
Volume 31, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Periodontitis is one of the most typical chronic dental diseases. This inflammatory disease can change various functions of immune cells and impair lipid metabolism through proinflammatory cytokines. High-Density Lipoprotein (HDL) is considered protective of the cardiovascular system. It has anti-thrombotic and anti-inflammatory effects. In this article, we have reviewed the association between periodontitis and HDL. Various studies have demonstrated a reverse relationship between inflammatory cytokines and HDL. HDL contains antioxidative enzymes and proteins, whereas periopathogens impair HDL's antioxidant function. The presence of periodontal bacteria is associated with a low HDL level in patients with periodontitis. Genetic variants in the interleukin-6 (IL)-6 gene and cytochrome () rs1048943 gene polymorphism are associated with HDL levels and periodontal status. Studies showed that HDL levels improve after treatment for periodontitis. On the one hand, periodontal pathogenic bacteria and their metabolites and pro-inflammatory cytokines from periodontal infection can result in various disorders of lipid metabolism and lipid peroxidation. On the other hand, hyperlipidemia and lipid peroxidation stimulate proinflammatory cytokines, resulting in oxidative stress and delayed wound healing, making individuals susceptible to periodontitis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230726140736
2023-09-18
2025-01-15
Loading full text...

Full text loading...

References

  1. Zare JavidA. HormoznejadR. YousefimaneshH. ZakerkishM. Haghighi-zadehM.H. DehghanP. RavanbakhshM. The impact of resveratrol supplementation on blood glucose, insulin, insulin resistance, triglyceride, and periodontal markers in type 2 diabetic patients with chronic periodontitis.Phytother. Res.201731110811410.1002/ptr.573727807887
    [Google Scholar]
  2. KaraA. AkmanS. OzkanlarS. TozogluU. KalkanY. CanakciC.F. TozogluS. Immune modulatory and antioxidant effects of melatonin in experimental periodontitis in rats.Free Radic. Biol. Med.201355212610.1016/j.freeradbiomed.2012.11.00223146767
    [Google Scholar]
  3. KallioK.A.E. BuhlinK. JauhiainenM. KevaR. TuomainenA.M. KlingeB. GustafssonA. PussinenP.J. Lipopolysaccharide associates with pro-atherogenic lipoproteins in periodontitis patients.Innate Immun.200814424725310.1177/175342590809513018669610
    [Google Scholar]
  4. BabaeiH. ForouzandehF. Maghsoumi-NorouzabadL. YousefimaneshH.A. RavanbakhshM. Zare JavidA. Effects of chicory leaf extract on serum oxidative stress markers, lipid profile and periodontal status in patients with chronic periodontitis.J. Am. Coll. Nutr.201837647948610.1080/07315724.2018.143737129558323
    [Google Scholar]
  5. KangB.Y. ChoiY.K. ChoiW.H. KimK.T. ChoiS.S. KimK. HaN.J. Two polymorphisms of lnterleukin-4 gene in Korean adult periodontitis.Arch. Pharm. Res.200326648248610.1007/BF0297686712877559
    [Google Scholar]
  6. BoutagaK. SavelkoulP.H.M. WinkelE.G. van WinkelhoffA.J. Comparison of subgingival bacterial sampling with oral lavage for detection and quantification of periodontal pathogens by real-time polymerase chain reaction.J. Periodontol.2007781798610.1902/jop.2007.06007817199543
    [Google Scholar]
  7. AmanoA. ChenC. HonmaK. LiC. SettemR.P. SharmaA. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.Adv. Dent. Res.2014261152210.1177/002203451452623724736700
    [Google Scholar]
  8. BeckJ.D. OffenbacherS. WilliamsR. GibbsP. GarciaR. Periodontitis: A risk factor for coronary heart disease?Ann. Periodontol.19983112714110.1902/annals.1998.3.1.1279722697
    [Google Scholar]
  9. TahamtanS. ShirbanF. BagherniyaM. JohnstonT.P. SahebkarA. The effects of statins on dental and oral health: A review of preclinical and clinical studies.J. Transl. Med.202018115510.1186/s12967‑020‑02326‑832252793
    [Google Scholar]
  10. BozoglanA. ErtugrulA.S. TaspınarM. YuzbasiogluB. Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients.Acta Odontol. Scand.201775423324210.1080/00016357.2017.128073928116969
    [Google Scholar]
  11. ChoiY.H. KosakaT. OjimaM. SekineS. KokuboY. WatanabeM. MiyamotoY. OnoT. AmanoA. Relationship between the burden of major periodontal bacteria and serum lipid profile in a cross-sectional Japanese study.BMC Oral Health20181817710.1186/s12903‑018‑0536‑029728099
    [Google Scholar]
  12. PussinenP.J. JousilahtiP. AlfthanG. PalosuoT. AsikainenS. SalomaaV. Antibodies to periodontal pathogens are associated with coronary heart disease.Arterioscler. Thromb. Vasc. Biol.20032371250125410.1161/01.ATV.0000072969.71452.8712714435
    [Google Scholar]
  13. ScannapiecoF.A. BushR.B. PajuS. Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke. A systematic review.Ann. Periodontol.200381385310.1902/annals.2003.8.1.3814971247
    [Google Scholar]
  14. KozarovE.V. DornB.R. ShelburneC.E. DunnW.A.Jr Progulske-FoxA. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis.Arterioscler. Thromb. Vasc. Biol.2005253e17e1810.1161/01.ATV.0000155018.67835.1a15662025
    [Google Scholar]
  15. SchenkeinH.A. LoosB.G. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases.J. Periodontol.2013844S51S6923631584
    [Google Scholar]
  16. OffenbacherS. ElterJ.R. LinD. BeckJ.D. Evidence for periodontitis as a tertiary vascular infection.J. Int. Acad. Periodontol.200572394815912923
    [Google Scholar]
  17. GordonD.J. ProbstfieldJ.L. GarrisonR.J. NeatonJ.D. CastelliW.P. KnokeJ.D. JacobsD.R.Jr BangdiwalaS. TyrolerH.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies.Circulation198979181510.1161/01.CIR.79.1.82642759
    [Google Scholar]
  18. SharrettA.R. BallantyneC.M. CoadyS.A. HeissG. SorlieP.D. CatellierD. PatschW. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study.Circulation2001104101108111310.1161/hc3501.09521411535564
    [Google Scholar]
  19. BacchettiT. FerrettiG. CarboneF. MinistriniS. MontecuccoF. JamialahmadiT. SahebkarA. Dysfunctional high-density lipoprotein: The role of myeloperoxidase and paraoxonase-1.Curr. Med. Chem.202128142842285010.2174/1875533XMTA43MjAgw32674726
    [Google Scholar]
  20. BahramiA. BarretoG.E. LombardiG. PirroM. SahebkarA. Emerging roles for high-density lipoproteins in neurodegenerative disorders.Biofactors201945572573910.1002/biof.154131301192
    [Google Scholar]
  21. GanjaliS. Dallinga-ThieG.M. Simental-MendíaL.E. BanachM. PirroM. SahebkarA. HDL functionality in type 1 diabetes.Atherosclerosis20172679910910.1016/j.atherosclerosis.2017.10.01829102899
    [Google Scholar]
  22. GanjaliS. GottoA.M.Jr RuscicaM. AtkinS.L. ButlerA.E. BanachM. SahebkarA. Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases.J. Cell. Physiol.2018233129237924610.1002/jcp.2702830076716
    [Google Scholar]
  23. GanjaliS. HosseiniS. RizzoM. KontushA. SahebkarA. Capacity of HDL to efflux cellular cholesterol from lipid-loaded macrophages is reduced in patients with familial hypercholesterolemia.Metabolites202313219710.3390/metabo1302019736837816
    [Google Scholar]
  24. GanjaliS. MomtaziA.A. BanachM. KovanenP.T. SteinE.A. SahebkarA. HDL abnormalities in familial hypercholesterolemia: Focus on biological functions.Prog. Lipid Res.201767162610.1016/j.plipres.2017.05.00128506805
    [Google Scholar]
  25. GanjaliS. RicciutiB. PirroM. ButlerA.E. AtkinS.L. BanachM. SahebkarA. High-density lipoprotein components and functionality in cancer: State-of-the-art.Trends Endocrinol. Metab.2019301122410.1016/j.tem.2018.10.00430473465
    [Google Scholar]
  26. GanjaliS. ShirmohammadiL. ReadM.I. SahebkarA. High-density lipoprotein functionality in systemic lupus erythematosus.Semin. Arthritis Rheum.202050476977510.1016/j.semarthrit.2020.05.01132531506
    [Google Scholar]
  27. BagherniyaM. SahebkarA. SadeghalbanaeiL. ShirbanF. SathyapalanT. The role of high-density lipoprotein in oral and dental diseases.Curr. Med. Chem.202330202226224610.2174/092986732966622090112065436056865
    [Google Scholar]
  28. YazdandoustS. ParizadehS.M.R. Ghayour-MobarhanM. YaghmaeiP. SahebkarA.H. High-density lipoprotein lipid peroxidation as a diagnostics biomarker in coronary artery disease.Biofactors202248363464210.1002/biof.181935080064
    [Google Scholar]
  29. Di AngelantonioE. SarwarN. PerryP. KaptogeS. RayK.K. ThompsonA. WoodA.M. LewingtonS. SattarN. PackardC.J. CollinsR. ThompsonS.G. DaneshJ. Major lipids, apolipoproteins, and risk of vascular disease.JAMA2009302181993200010.1001/jama.2009.161919903920
    [Google Scholar]
  30. KimH.J. ChaG.S. KimH.J. KwonE.Y. LeeJ.Y. ChoiJ. JooJ.Y. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein.J. Periodontal Implant Sci.2018481606810.5051/jpis.2018.48.1.6029535891
    [Google Scholar]
  31. O’NeillF. RiwantoM. CharakidaM. ColinS. ManzJ. McLoughlinE. KhanT. KleinN. KayC.W.M. PatelK. ChinettiG. StaelsB. D’AiutoF. LandmesserU. DeanfieldJ. Structural and functional changes in HDL with low grade and chronic inflammation.Int. J. Cardiol.201518811111610.1016/j.ijcard.2015.03.05825919891
    [Google Scholar]
  32. RosensonR.S. BrewerH.B.Jr AnsellB.J. BarterP. ChapmanM.J. HeineckeJ.W. KontushA. TallA.R. WebbN.R. Dysfunctional HDL and atherosclerotic cardiovascular disease.Nat. Rev. Cardiol.2016131486010.1038/nrcardio.2015.12426323267
    [Google Scholar]
  33. MineoC. ShaulP.W. Novel biological functions of high-density lipoprotein cholesterol.Circ. Res.201211181079109010.1161/CIRCRESAHA.111.25867323023510
    [Google Scholar]
  34. NorataG.D. PirilloA. AmmiratiE. CatapanoA.L. Emerging role of high density lipoproteins as a player in the immune system.Atherosclerosis20122201112110.1016/j.atherosclerosis.2011.06.04521783193
    [Google Scholar]
  35. PatelS. Di BartoloB.A. NakhlaS. HeatherA.K. MitchellT.W. JessupW. CelermajerD.S. BarterP.J. RyeK.A. Anti-inflammatory effects of apolipoprotein A-I in the rabbit.Atherosclerosis2010212239239710.1016/j.atherosclerosis.2010.05.03520609437
    [Google Scholar]
  36. LiY. DongJ.B. WuM.P. Human ApoA-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice.Eur. J. Pharmacol.20085901-341742210.1016/j.ejphar.2008.06.04718593575
    [Google Scholar]
  37. KamedaT. OhkawaR. YanoK. UsamiY. MiyazakiA. MatsudaK. KawasakiK. SuganoM. KubotaT. TozukaM. Effects of myeloperoxidase-induced oxidation on antiatherogenic functions of high-density lipoprotein.J. Lipids2015201559259410.1155/2015/59259426257958
    [Google Scholar]
  38. PapageorgiouN. TousoulisD. Interaction between HDL and inflammation: When the good turns to be bad.Int. J. Cardiol.2015189151710.1016/j.ijcard.2015.03.41125885867
    [Google Scholar]
  39. PussinenP.J. TuomistoK. JousilahtiP. HavulinnaA.S. SundvallJ. SalomaaV. Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events.Arterioscler. Thromb. Vasc. Biol.20072761433143910.1161/ATVBAHA.106.13874317363692
    [Google Scholar]
  40. LevineD.M. ParkerT.S. DonnellyT.M. WalshA. RubinA.L. In vivo protection against endotoxin by plasma high density lipoprotein.Proc. Natl. Acad. Sci.19939024120401204410.1073/pnas.90.24.120408265667
    [Google Scholar]
  41. GoteinerD. CraigR.G. AshmenR. JanalM.N. EskinB. LehrmanN. Endotoxin levels are associated with high-density lipoprotein, triglycerides, and troponin in patients with acute coronary syndrome and angina: Possible contributions from periodontal sources.J. Periodontol.200879122331233910.1902/jop.2008.08006819053924
    [Google Scholar]
  42. BaranovaI. VishnyakovaT. BocharovA. ChenZ. RemaleyA.T. StonikJ. EggermanT.L. PattersonA.P. Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells.Infect. Immun.20027062995300310.1128/IAI.70.6.2995‑3003.200212010990
    [Google Scholar]
  43. PussinenP.J. JauhiainenM. Vilkuna-RautiainenT. SundvallJ. VesanenM. MattilaK. PalosuoT. AlfthanG. AsikainenS. Periodontitis decreases the antiatherogenic potency of high density lipoprotein.J. Lipid Res.200445113914710.1194/jlr.M300250‑JLR20013130123
    [Google Scholar]
  44. SoumyaraniV.S. JayakumariN. Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes–macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2.Mol. Cell. Biochem.20123661-227728510.1007/s11010‑012‑1306‑y22527933
    [Google Scholar]
  45. PerssonJ. NilssonJ. LindholmM.W. Interleukin-1beta and tumour necrosis factor-alpha impede neutral lipid turnover in macrophage-derived foam cells.BMC Immunol.2008917010.1186/1471‑2172‑9‑7019032770
    [Google Scholar]
  46. JonesC. SaneD.C. HerringtonD.M. Matrix metalloproteinases: A review of their structure and role in acute coronary syndrome.Cardiovasc. Res.200359481282310.1016/S0008‑6363(03)00516‑914553821
    [Google Scholar]
  47. GoughP.J. GomezI.G. WilleP.T. RainesE.W. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice.J. Clin. Invest.20051161596910.1172/JCI2507416374516
    [Google Scholar]
  48. StntzingS. HeuschmannP. BarberaL. OckerM. JungA. KirchnerT. NeureiterD. Overexpression of MMP9 and tissue factor in unstable carotid plaques associated with Chlamydia pneumoniae, inflammation, and apoptosis.Ann. Vasc. Surg.200519331031910.1007/s10016‑005‑0003‑715818457
    [Google Scholar]
  49. HaroA. SaxlinT. SuominenA.L. JulaA. KnuuttilaM. YlöstaloP. Serum lipids modify periodontal infection - interleukin-6 association.J. Clin. Periodontol.201744327528210.1111/jcpe.1268828032903
    [Google Scholar]
  50. GonçalvesTO CostaD BrodskynCI DuartePM NetoJBC Nogueira-FilhoG Release of cytokines by stimulated peripheral blood mononuclear cells in chronic periodontitis.Arch. Oral. Biol.201055129758010.1016/j.archoralbio.2010.08.002.20880516
    [Google Scholar]
  51. LiuX. WangZ. SongW. SunW. HongR. PothukuchiA. XuQ. Systematically transplanted human gingiva-derived mesenchymal stem cells regulate lipid metabolism and inflammation in hyperlipidemic mice with periodontitis.Exp. Ther. Med.202019167268231885706
    [Google Scholar]
  52. LoosB.G. Systemic effects of periodontitis.Int. J. Dent. Hyg.20064s1343810.1111/j.1601‑5037.2006.00200.x16965532
    [Google Scholar]
  53. ParaskevasS. HuizingaJ.D. LoosB.G. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis.J. Clin. Periodontol.200835427729010.1111/j.1600‑051X.2007.01173.x18294231
    [Google Scholar]
  54. WangZ. HoyW.E. C-reactive protein: An independent predictor of cardiovascular disease in Aboriginal Australians.Aust. N. Z. J. Public Health201034Suppl. 1S25S2910.1111/j.1753‑6405.2010.00548.x20618287
    [Google Scholar]
  55. WangT.J. LarsonM.G. LevyD. BenjaminE.J. KupkaM.J. ManningW.J. ClouseM.E. D’AgostinoR.B. WilsonP.W.F. O’DonnellC.J. C-reactive protein is associated with subclinical epicardial coronary calcification in men and women: The framingham heart study.Circulation2002106101189119110.1161/01.CIR.0000032135.98011.C412208790
    [Google Scholar]
  56. AndrukhovO. HaririanH. BertlK. RauschW.D. BantleonH.P. MoritzA. Rausch-FanX. Nitric oxide production, systemic inflammation and lipid metabolism in periodontitis patients: Possible gender aspect.J. Clin. Periodontol.2013401091692310.1111/jcpe.1214523952303
    [Google Scholar]
  57. de MaatM.P.M. KluftC. Determinants of C-reactive protein concentration in blood.BMC News views20011S200210.1186/2048‑4623‑1‑S2‑00211305530
    [Google Scholar]
  58. LeiteA.C.E. CarneiroV.M.A. GuimarãesM.C.M. Effects of periodontal therapy on C-reactive protein and HDL in serum of subjects with periodontitis.Rev. Bras. Cir. Cardiovasc.2014291697710.5935/1678‑9741.2014001324896165
    [Google Scholar]
  59. AlmeidaA.P.C.P.S.C. FagundesN.C.F. MaiaL.C. LimaR.R. Is there an association between periodontitis and atherosclerosis in adults? A systematic review.Curr. Vasc. Pharmacol.201816656958210.2174/157016111566617083014185228875830
    [Google Scholar]
  60. IacopinoA.M. CutlerC.W. Pathophysiological relationships between periodontitis and systemic disease: Recent concepts involving serum lipids.J. Periodontol.20007181375138410.1902/jop.2000.71.8.137510972656
    [Google Scholar]
  61. BettsJ.C. LukeyP.T. RobbL.C. McAdamR.A. DuncanK. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling.Mol. Microbiol.200243371773110.1046/j.1365‑2958.2002.02779.x11929527
    [Google Scholar]
  62. NonnenmacherC. StelzelM. SusinC. SattlerA.M. SchaeferJ.R. MaischB. MuttersR. Flores-de-JacobyL. Periodontal microbiota in patients with coronary artery disease measured by real-time polymerase chain reaction: A case-control study.J. Periodontol.20077891724173010.1902/jop.2007.06034517760542
    [Google Scholar]
  63. ArdilaC.M. Olarte-SossaM. Ariza-GarcésA.A. Association between the presence of Treponema denticola and reduced levels of antiatherogenic high density lipoprotein in periodontitis.Quintessence Int.201546320721525328922
    [Google Scholar]
  64. AliprantisA.O. YangR.B. MarkM.R. SuggettS. DevauxB. RadolfJ.D. KlimpelG.R. GodowskiP. ZychlinskyA. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2.Science1999285542873673910.1126/science.285.5428.73610426996
    [Google Scholar]
  65. OkudaK. IshiharaK. NakagawaT. HirayamaA. InayamaY. OkudaK. Detection of Treponema denticola in atherosclerotic lesions.J. Clin. Microbiol.20013931114111710.1128/JCM.39.3.1114‑1117.200111230436
    [Google Scholar]
  66. RossR. Atherosclerosis--an inflammatory disease.N. Engl. J. Med.1999340211512610.1056/NEJM1999011434002079887164
    [Google Scholar]
  67. SocranskyS.S. HaffajeeA.D. The bacterial etiology of destructive periodontal disease: Current concepts.J. Periodontol.1992634s32233110.1902/jop.1992.63.4s.322
    [Google Scholar]
  68. MysakJ PodzimekS SommerovaP Lyuya-MiY BartovaJ JanatovaT ProchazkovaJ DuskovaJ Porphyromonas gingivalis: Major periodontopathic pathogen overview.J. Immunol. Res.2014201447606810.1155/2014/476068
    [Google Scholar]
  69. LönnJ. LjunggrenS. Klarström-EngströmK. DemirelI. BengtssonT. KarlssonH. Lipoprotein modifications by gingipains of Porphyromonas gingivalis.J. Periodontal Res.201853340341310.1111/jre.1252729341140
    [Google Scholar]
  70. GuoY. NguyenK.A. PotempaJ. Dichotomy of gingipains action as virulence factors: From cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins.Periodontol. 20002010541154410.1111/j.1600‑0757.2010.00377.x20712631
    [Google Scholar]
  71. JeongE. KimK. KimJ.H. ChaG.S. KimS.J. KangH.S. ChoiJ. Porphyromonas gingivalis HSP60 peptides have distinct roles in the development of atherosclerosis.Mol. Immunol.201563248949610.1016/j.molimm.2014.10.00425457882
    [Google Scholar]
  72. KuramitsuH.K. ChenW. IkegamiA. Biofilm formation by the periodontopathic bacteria Treponema denticola and Porphyromonas gingivalis.J. Periodontol.20057611-s2047205110.1902/jop.2005.76.11‑S.2047
    [Google Scholar]
  73. ArdilaC.M. GuzmánI.C. High levels of Porphyromonas gingivalis -induced immunoglobulin G2 are associated with lower high-density lipoprotein levels in chronic periodontitis.J. Investig. Clin. Dent.20167436837510.1111/jicd.1216926074399
    [Google Scholar]
  74. GencoR. OffenbacherS. BeckJ. Periodontal disease and cardiovascular disease.J. Am. Dent. Assoc.2002133Suppl.14S22S10.14219/jada.archive.2002.037512085720
    [Google Scholar]
  75. ChampagneC. YoshinariN. OetjenJ.A. RichéE.L. BeckJ.D. OffenbacherS. Gender differences in systemic inflammation and atheroma formation following Porphyromonas gingivalis infection in heterozygous apolipoprotein E-deficient mice.J. Periodontal Res.200944556957710.1111/j.1600‑0765.2008.01156.x18973527
    [Google Scholar]
  76. MaekawaT. TakahashiN. TabetaK. AokiY. MiyashitaH. MiyauchiS. MiyazawaH. NakajimaT. YamazakiK. Chronic oral infection with Porphyromonas gingivalis accelerates atheroma formation by shifting the lipid profile.PLoS One201165e2024010.1371/journal.pone.002024021625524
    [Google Scholar]
  77. Frikke-SchmidtR. NordestgaardB.G. SteneM.C. SethiA.A. RemaleyA.T. SchnohrP. GrandeP. Tybjaerg-HansenA. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease.JAMA2008299212524253210.1001/jama.299.21.252418523221
    [Google Scholar]
  78. PussinenP.J. MetsoJ. MalleE. BarlageS. PalosuoT. SattlerW. SchmitzG. JauhiainenM. The role of plasma phospholipid transfer protein (PLTP) in HDL remodeling in acute-phase patients.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20011533215316310.1016/S1388‑1981(01)00153‑611566452
    [Google Scholar]
  79. LyH. FranconeO.L. FieldingC.J. ShigenagaJ.K. MoserA.H. GrunfeldC. FeingoldK.R. Endotoxin and TNF lead to reduced plasma LCAT activity and decreased hepatic LCAT mRNA levels in Syrian hamsters.J. Lipid Res.19953661254126310.1016/S0022‑2275(20)41133‑27666003
    [Google Scholar]
  80. BullonP. NewmanH.N. BattinoM. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: A shared pathology via oxidative stress and mitochondrial dysfunction?Periodontol. 2000201464113915310.1111/j.1600‑0757.2012.00455.x24320961
    [Google Scholar]
  81. LutfioğluM. AydoğduA. AtabayV.E. SakallioğluE.E. AvciB. Gingival crevicular fluid oxidative stress level in patients with periodontal disease and hyperlipidemia.Braz. Oral Res.2017310e11010.1590/1807‑3107bor‑2017.vol31.011029267671
    [Google Scholar]
  82. KrauseS. BrachmannP. BrandesC. LöscheW. HoffmannT. GänglerP. Aggregation behaviour of blood granulocytes in patients with periodontal disease.Arch. Oral Biol.1990351757710.1016/0003‑9969(90)90119‑U2390026
    [Google Scholar]
  83. Le LayS. SimardG. MartinezM.C. AndriantsitohainaR. Oxidative stress and metabolic pathologies: From an adipocentric point of view.Oxid. Med. Cell Longev.2014201490853910.1155/2014/908539
    [Google Scholar]
  84. ChevionM. BerenshteinE. StadtmanE.R. Human studies related to protein oxidation: Protein carbonyl content as a marker of damage.Free Radic. Res.200033S99S10811191280
    [Google Scholar]
  85. Del RioD. StewartA.J. PellegriniN. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress.Nutr. Metab. Cardiovasc. Dis.200515431632810.1016/j.numecd.2005.05.00316054557
    [Google Scholar]
  86. TsaiC.C. ChenH.S. ChenS.L. HoY.P. HoK.Y. WuY.M. HungC.C. Lipid peroxidation: A possible role in the induction and progression of chronic periodontitis.J. Periodontal Res.200540537838410.1111/j.1600‑0765.2005.00818.x16105090
    [Google Scholar]
  87. GriffithsR. BarbourS. Lipoproteins and lipoprotein metabolism in periodontal disease.Clin. Lipidol.20105339741110.2217/clp.10.2720835400
    [Google Scholar]
  88. RosensonRJr BrewerH AnsellB BarterP ChapmanM HeineckeJ. Dysfunctional HDL and atherosclerotic cardiovascular disease.Nat. Rev. Cardiol.2015131486010.1038/nrcardio.2015.124.26323267
    [Google Scholar]
  89. RomO AviramM. High-density lipoprotein-associated paraoxonase 1: A possible prognostic biomarker for heart failure?Eur. J. Heart Fail201719675675910.1002/ejhf.817.28371029
    [Google Scholar]
  90. LjunggrenS. BengtssonT. KarlssonH. Starkhammar JohanssonC. PalmE. NayeriF. GhafouriB. DaviesJ. SvensäterG. LönnJ. Modified lipoproteins in periodontitis: A link to cardiovascular disease?Biosci. Rep.2019393BSR2018166510.1042/BSR2018166530842338
    [Google Scholar]
  91. Martin-VenturaJ. Rodrigues-DiezR. Martinez-LopezD. SalaicesM. Blanco-ColioL. BrionesA. Oxidative stress in human atherothrombosis: Sources, markers and therapeutic targets.Int. J. Mol. Sci.20171811231510.3390/ijms1811231529099757
    [Google Scholar]
  92. RamasamyI. Recent advances in physiological lipoprotein metabolism.Clin. Chem. Lab. Med.201452121695172710.1515/cclm‑2013‑0358
    [Google Scholar]
  93. ShaoB. TangC. SinhaA. MayerP.S. DavenportG.D. BrotN. OdaM.N. ZhaoX.Q. HeineckeJ.W. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase.Circ. Res.2014114111733174210.1161/CIRCRESAHA.114.30345424647144
    [Google Scholar]
  94. GrudyanovA.I. TkachevaO.N. AvraamovaT.V. Correlation of chronic periodontal disease and cardiovascular disease.Stomatologia20179614710.17116/stomat20179614‑728317819
    [Google Scholar]
  95. MoncadaS. PalmerR.M. HiggsE.A. Nitric oxide: Physiology, pathophysiology, and pharmacology.Pharmacol. Rev.19914321091421852778
    [Google Scholar]
  96. Rausch-FanX. MatejkaM. From plaque formation to periodontal disease, is there a role for nitric oxide?Eur. J. Clin. Invest.2001311083383510.1046/j.1365‑2362.2001.00903.x11737219
    [Google Scholar]
  97. KendallH.K. MarshallR.I. BartoldP.M. Nitric oxide and tissue destruction.Oral Dis.20017121010.1034/j.1601‑0825.2001.70102.x11354916
    [Google Scholar]
  98. AkalinF.A. ŞengünD. EratalayK. RendaN. ÇağlayanG. Hydroxyproline and total protein levels in gingiva and gingival crevicular fluid in patients with juvenile, rapidly progressive, and adult periodontitis.J. Periodontol.199364532332910.1902/jop.1993.64.5.3238515361
    [Google Scholar]
  99. Uğar-ÇankalD. OzmericN. A multifaceted molecule, nitric oxide in oral and periodontal diseases.Clin. Chim. Acta.20063661-29010010.1016/j.cca.2005.10.01816387291
    [Google Scholar]
  100. AssmannG. GottoA.M.Jr HDL cholesterol and protective factors in atherosclerosis.Circulation200410923_suppl_1III8III1410.1161/01.CIR.0000131512.50667.4615198960
    [Google Scholar]
  101. ShiauH.J. ReynoldsM.A. Sex differences in destructive periodontal disease: Exploring the biologic basis.J. Periodontol.201081111505151710.1902/jop.2010.10004520594052
    [Google Scholar]
  102. Roeters van LennepJ. WesterveldH.T. ErkelensD.W. van der WallE.E. Risk factors for coronary heart disease: Implications of gender.Cardiovasc. Res.200253353854910.1016/S0008‑6363(01)00388‑111861024
    [Google Scholar]
  103. FrancisG.A. High density lipoprotein oxidation: In vitro susceptibility and potential in vivo consequences.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20001483221723510.1016/S1388‑1981(99)00181‑X10634938
    [Google Scholar]
  104. BarterP.J. BakerP.W. RyeK.A. Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells.Curr. Opin. Lipidol.200213328528810.1097/00041433‑200206000‑0000812045398
    [Google Scholar]
  105. RenJ. JinW. ChenH. oxHDL decreases the expression of CD36 on human macrophages through PPARγ and p38 MAP kinase dependent mechanisms.Mol. Cell. Biochem.20103421-217118110.1007/s11010‑010‑0481‑y20458524
    [Google Scholar]
  106. NakajimaT. OriguchiN. MatsunagaT. KawaiS. HokariS. NakamuraH. InoueI. KatayamaS. NagataA. KomodaT. Localization of oxidized HDL in atheromatous plaques and oxidized HDL binding sites on human aortic endothelial cells.Ann. Clin. Biochem.200037217918610.1258/000456300189918610735361
    [Google Scholar]
  107. GuengerichF.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity.Chem. Res. Toxicol.200114661165010.1021/tx000258311409933
    [Google Scholar]
  108. ElbekaiR.H. El-KadiA.O.S. Cytochrome P450 enzymes: Central players in cardiovascular health and disease.Pharmacol. Ther.2006112256458710.1016/j.pharmthera.2005.05.01116824612
    [Google Scholar]
  109. SugawaraT. NomuraE. SagawaT. SakuragiN. FujimotoS. CYP1A1 polymorphism and risk of gynecological malignancy in Japan.Int. J. Gynecol. Cancer200313678579010.1136/ijgc‑00009577‑200311000‑0000914675315
    [Google Scholar]
  110. ShahP.P. SaurabhK. PantM.C. MathurN. ParmarD. Evidence for increased cytochrome P450 1A1 expression in blood lymphocytes of lung cancer patients.Mutat. Res.20096701-2747810.1016/j.mrfmmm.2009.07.00619632247
    [Google Scholar]
  111. ZouJ.G. MaY.T. XieX. YangY.N. PanS. AdiD. LiuF. ChenB.D. The association between CYP1A1 genetic polymorphisms and coronary artery disease in the Uygur and Han of China.Lipids Health Dis.2014131210.1186/1476‑511X‑13‑14525189712
    [Google Scholar]
  112. WangX. LiW. SongW. XuL. ZhangL. FengX. LuR. MengH. Association of CYP 1A1 rs1048943 variant with aggressive periodontitis and its interaction with hyperlipidemia on the periodontal status.J. Periodontal Res.201954554655410.1111/jre.1265831032950
    [Google Scholar]
  113. LindenG.J. HerzbergM.C. Periodontitis and systemic diseases: A record of discussions of working group 4 of the joint EFP/AAP workshop on periodontitis and systemic diseases.J. Periodontol.2013844S20S2323631580
    [Google Scholar]
  114. NapoliN. VillarealD.T. MummS. HalsteadL. SheikhS. CagaananM. RiniG.B. Armamento-VillarealR. Effect of CYP1A1 gene polymorphisms on estrogen metabolism and bone density.J. Bone Miner. Res.200520223223910.1359/JBMR.04111015647817
    [Google Scholar]
  115. JarrarY.B. ChoS.A. OhK.S. KimD.H. ShinJ.G. LeeS.J. Identification of cytochrome P450s involved in the metabolism of arachidonic acid in human platelets.Prostaglandins Leukot. Essent. Fatty Acids201389422723410.1016/j.plefa.2013.06.00823932368
    [Google Scholar]
  116. NibaliL. PelekosG. D’AiutoF. ChaudharyN. HabeebR. ReadyD. ParkarM. DonosN. Influence of IL-6 haplotypes on clinical and inflammatory response in aggressive periodontitis.Clin. Oral Investig.20131741235124222918663
    [Google Scholar]
  117. NibaliL. RizzoM. Li VoltiG. D’AiutoF. GiglioR.V. BarbagalloI. PelekosG. DonosN. Lipid subclasses profiles and oxidative stress in aggressive periodontitis before and after treatment.J. Periodontal Res.201550689089610.1111/jre.1228325994389
    [Google Scholar]
  118. HassanW. DingL. GaoR.Y. LiuJ. ShangJ. Interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders.Cytokine201466213314210.1016/j.cyto.2013.12.01724491813
    [Google Scholar]
  119. FuY.W. LiX.X. XuH.Z. GongY.Q. YangY. Effects of periodontal therapy on serum lipid profile and proinflammatory cytokines in patients with hyperlipidemia: A randomized controlled trial.Clin. Oral Investig.20162061263126910.1007/s00784‑015‑1621‑226434651
    [Google Scholar]
  120. KudoC. ShinW.S. SasakiN. HaraiK. KatoK. SeinoH. GokeE. FujinoT. KuribayashiN. PearceY.O. TairaM. MatsushimaR. MinabeM. TakashibaS. Effects of periodontal treatment on carotid intima-media thickness in patients with lifestyle-related diseases: Japanese prospective multicentre observational study.Odontology2018106331632710.1007/s10266‑017‑0331‑429330707
    [Google Scholar]
  121. SubhaD.S. PradeepT. Periodontal therapy with 0.25%lemongrass oil mouthwash in reducing risk of cardiovascular diseases: A 3-arm prospective parallel experimental study.Ethiop. J. Health Sci.201727553154010.4314/ejhs.v27i5.1229217959
    [Google Scholar]
  122. ErtugrulA.S. BozoglanA. TaspınarM. The effect of nonsurgical periodontal treatment on serum and gingival crevicular fluid markers in patients with atherosclerosis.Niger. J. Clin. Pract.201720336136810.4103/1119‑3077.18136928256493
    [Google Scholar]
  123. GardeS. AkhterR. NguyenM.A. ChowC.K. EberhardJ. Periodontal therapy for improving lipid profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis.Int. J. Mol. Sci.20192015382610.3390/ijms2015382631387283
    [Google Scholar]
  124. TeeuwW.J. SlotD.E. SusantoH. GerdesV.E.A. AbbasF. D’AiutoF. KasteleinJ.J.P. LoosB.G. Treatment of periodontitis improves the atherosclerotic profile: A systematic review and meta-analysis.J. Clin. Periodontol.2014411707910.1111/jcpe.1217124111886
    [Google Scholar]
  125. TawfigA. Effects of non-surgical periodontal therapy on serum lipids and C-reactive protein among hyperlipidemic patients with chronic periodontitis.J. Int. Soc. Prev. Community Dent.201557 (S1) 4910.4103/2231‑0762.15652425984468
    [Google Scholar]
  126. de Fatima PedrosoJ. LotfollahiZ. AlbattarniG. SchulzM.A. MonteiroA. SehnemA.L. Influence of periodontal disease on cardiovascular markers in Diabetes Mellitus patients.Sci. Rep.2019911930626917
    [Google Scholar]
  127. LiL. MessasE. BatistaE.L.Jr LevineR.A. AmarS. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model.Circulation2002105786186710.1161/hc0702.10417811854128
    [Google Scholar]
  128. MaglakelidzeN. GalogreA. TsagareliZ. Functional-morphologic aspects of changes of mucosal gingiva microcirculatory bed vessels in experimental gingivitis against the background of hypercholesterolemia.Georgian Med. News2005121717415908731
    [Google Scholar]
  129. BuhlinK. GustafssonA. PockleyA.G. FrostegårdJ. KlingeB. Risk factors for cardiovascular disease in patients with periodontitis.Eur. Heart J.200324232099210710.1016/j.ehj.2003.09.01614643270
    [Google Scholar]
  130. SeijkensT. HoeksemaM.A. BeckersL. SmeetsE. MeilerS. LevelsJ. TjwaM. WintherM.P.J. LutgensE. Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis.FASEB J.20142852202221310.1096/fj.13‑24310524481967
    [Google Scholar]
  131. FentoğluÖ. KırzıoğluF.Y. BulutM.T. Kumbul DoğuçD. KulaçE. ÖnderC. GünhanM. Evaluation of lipid peroxidation and oxidative DNA damage in patients with periodontitis and hyperlipidemia.J. Periodontol.201586568268810.1902/jop.2015.14056125612631
    [Google Scholar]
  132. RufailM.L. SchenkeinH.A. BarbourS.E. TewJ.G. van AntwerpenR. Altered lipoprotein subclass distribution and PAF-AH activity in subjects with generalized aggressive periodontitis.J. Lipid Res.200546122752276010.1194/jlr.M500389‑JLR20016179738
    [Google Scholar]
  133. Borilova LinhartovaP. BartovaJ. PoskerovaH. MachalJ. VokurkaJ. FassmannA. Izakovicova HollaL. Apolipoprotein E gene polymorphisms in relation to chronic periodontitis, periodontopathic bacteria, and lipid levels.Arch. Oral Biol.201560345646210.1016/j.archoralbio.2014.10.00325545672
    [Google Scholar]
  134. LeeS. ImA. BurmE. HaM. Association between periodontitis and blood lipid levels in a Korean population.J. Periodontol.2018891283528871890
    [Google Scholar]
  135. BoyapatiR. ChinthalapaniS. RamisettiA. SalavadhiS. RamachandranR. Association of pentraxin and high-sensitive C-reactive protein as inflammatory biomarkers in patients with chronic periodontitis and peripheral arterial disease.J. Indian Soc. Periodontol.201822211211510.4103/jisp.jisp_290_1729769764
    [Google Scholar]
  136. SayarF. FallahS. AkhondiN. JamshidiS. Association of serum lipid indices and statin consumption with periodontal status.Oral Dis.201622877578010.1111/odi.1254527426870
    [Google Scholar]
  137. GórskiB. NargiełłoE. OpolskiG. GanowiczE. GórskaR. The association between dental status and systemic lipid profile and inflammatory mediators in patients after myocardial infarction.Adv. Clin. Exp. Med.201625462563210.17219/acem/6293727629835
    [Google Scholar]
  138. KoshyB.S. MahendraJ. The association between periodontal status, serum lipid levels, lipoprotein associated phosholipase A2 (Lp-PLA2) in chronic periodontitis subjects and healthy controls.J. Clin. Diagn. Res.2017119ZC17ZC2110.7860/JCDR/2017/27628.1056529207826
    [Google Scholar]
  139. MacriE. LifshitzF. RamosC. OrzuzaR. CostaO. ZagoV. BoyerP. FriedmanS. Atherogenic cholesterol-rich diet and periodontal disease.Arch. Oral Biol.201459767968610.1016/j.archoralbio.2014.03.00624769219
    [Google Scholar]
  140. NepomucenoR. PigossiS.C. FinotiL.S. OrricoS.R.P. CirelliJ.A. BarrosS.P. OffenbacherS. Scarel-CaminagaR.M. Serum lipid levels in patients with periodontal disease: A meta-analysis and meta-regression.J. Clin. Periodontol.201744121192120710.1111/jcpe.1279228782128
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230726140736
Loading
/content/journals/cmc/10.2174/0929867331666230726140736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test