Skip to content
2000
Volume 31, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Xanthones are widely distributed polyphenols, present commonly in higher plants; and . Xanthone tricyclic scaffold is able to interact with different biological targets, showing antibacterial and cytotoxic effects, as well as potent effects against osteoarthritis, malaria, and cardiovascular diseases. Thus, in this article we focused on pharmacological effects, applications and preclinical studies with the recent updates of xanthon´s isolated compounds from 2017-2020. We found that only α-mangostin, gambogic acid, and mangiferin, have been subjected to preclinical studies with particular emphasis on the development of anticancer, diabetes, antimicrobial and hepatoprotective therapeutics. Molecular docking calculations were performed to predict the binding affinities of xanthone-derived compounds against SARS-CoV-2 Mpro. According to the results, cratoxanthone E and morellic acid demonstrated promising binding affinities towards SARS-CoV-2 Mpro with docking scores of −11.2 and −11.0 kcal/mol, respectively. Binding features manifested the capability of cratoxanthone E and morellic acid to exhibit nine and five hydrogen bonds, respectively, with the key amino acids of the Mpro active site. In conclusion, cratoxanthone E and morellic acid are promising anti-COVID-19 drug candidates that warrant further detailed experimental estimation and clinical assessment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867330666230221111941
2024-01-01
2025-01-09
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867330666230221111941
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test