Skip to content
2000
Volume 30, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Lead optimization as a bottleneck in the process of drug discovery is conducted to tackle problems associated with poor pharmacokinetics, continuous emergence of drugresistance, adverse side effects and drug-drug interactions of known pharmaceuticals. Due to the intensive application of multi-targeted tyrosine kinase inhibitors (MTKI) in various pathological conditions, optimization of their structures has always been the focus of intensive medicinal chemistry research efforts. The current review portrays the application of scaffold hopping, bioisosterism, structure-based, and hybrid-based drug design methods in the optimization of lead compounds aiming to enhance their usefulness as novel drugs. Then, the review proceeds with examples of structural modifications carried out, particularly on multi-targeted drugs already available on the market. The demonstrated examples cover structural modifications on 7 well-known drugs during the last twenty years. The application of the above-mentioned strategies has led to the generation of 52 new multitargeted tyrosine kinase inhibitors. Most of the optimized compounds showed improved properties compared to their parent lead compound. The rationales behind the applied modifications and the achieved outcomes were discussed to present practical examples to the researchers engaged in the area.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867329666220920092908
2023-07-01
2025-09-13
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867329666220920092908
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test