Skip to content
2000
Volume 28, Issue 31
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Leishmaniasis, a complex disease caused by at least 20 species of unicellular parasites of the genus Leishmania, disproportionately affects impoverished regions of about 90 tropical and sub-tropical countries. Currently available antileishmanial therapies, particularly for visceral leishmaniasis, are severely limited, with treatment outcome depending on many factors, including the immune status of the patient, comorbidities, malnutrition, and socio-economic conditions in the patient’s geographic location. There is an urgent need for new therapeutics, particularly new effective oral drugs, for visceral leishmaniasis. Despite the availability of the Leishmania genome sequence information and significant research into the biology of the parasites, antileishmanial drug development is hampered by the lack of knowledge about druggable targets in the parasite and difficulties in identifying the molecular targets of compounds that show activity. In this context, we analyzed recent progress in antileishmanial drug development programs, which take advantage of different powerful approaches, such as high-throughput screening of compound libraries, recent developments in genetic methods for assessing essentiality of parasite genes, and chemical, genetic, and proteomics-based target discovery and target validation methods.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867328666201125121018
2021-09-01
2025-05-10
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867328666201125121018
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test