Skip to content
2000
Volume 26, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background: Accumulating experimental data supports the capacity of natural compounds to intervene in complicated molecular pathways underlying the pathogenesis of certain human morbidities. Among them, diabetes is now a world’s epidemic associated with increased risk of death; thus, the detection of novel anti-diabetic agents and/or adjuvants is of vital importance. Alkaloids represent a diverse group of natural products with a range of therapeutic properties; during the last 20 years, published research on their anti-diabetic capacity has been tremendously increased. Purpose: To discuss current concepts on the anti-diabetic impact of certain alkaloids, with special reference to their molecular targets throughout the insulin-signaling pathway. Methodology: Upon in-depth search in the SCOPUS and PUBMED databases, the literature on alkaloids with insulin secretion/sensitization properties was critically reviewed. Results: In-vitro and in-vivo evidence supports the effect of berberine, trigonelline, piperine, oxymatrine, vindoneline, evodiamine and neferine on insulin-signaling and related cascades in beta-cells, myocytes, adipocytes, hepatocytes and other cells. Associated receptors, kinases, hormones and cytokines, are affected in terms of gene transcription, protein expression, activity and/or phosphorylation. Pathophysiological processes associated with insulin resistance, beta-cell failure, oxidative stress and inflammation, as well as clinical phenotype are also influenced. Discussion: Growing evidence suggests the ability of specific alkaloids to intervene in the insulin-signal transduction pathway, reverse molecular defects resulting in insulin resistance and glucose intolerance and improve disease complications, in-vitro and in-vivo. Future indepth molecular studies are expected to elucidate their exact mechanism of action, while large clinical trials are urgently needed to assess their potential as anti-diabetic agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867325666180430152618
2019-10-01
2025-06-15
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867325666180430152618
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test