Skip to content
2000
Volume 24, Issue 14
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Renal transplantation (RT) is considered the “gold standard” treatment for end-stage renal disease patients. Efforts should be made to reduce ischaemia-reperfusion (IR) injury, which unavoidably occurs in RT as long as several clinical settings, i.e. open-heart surgeries, prosthesis implantation, among others. It is well known that IR is primarily responsible for injury associated with RT. Consequently, tissue inflammation and organ dysfunction will ensue due to the occurrence of oxidative stress (OS) in the reperfused tissue, a condition generated when endogenous antioxidant defences become overwhelmed by a massive production of reactive oxygen species. Furthermore, OS is involved in the impairment of renal function, leading to deleterious conditions such as delayed graft function (DGF), which is a common clinical expression of IR injury in RT. Omega-3 polyunsaturated fatty acids (n -3 PUFA) have been widely used in different clinical settings to counteract the deleterious effects of OS. Thus, based on the currently available literature, the central aim of this review was to propose an n-3 PUFAbased strategy targeting the key role of OS in the pathophysiology of renal IR injury in order to encourage protection against the occurrence of DGF.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867324666170227115435
2017-04-01
2025-05-31
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867324666170227115435
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test