Skip to content
2000
Volume 23, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Taxanes are a family of diterpenes produced by the yews (Taxus genus) that are extensively used in chemotherapy. The family encompasses paclitaxel, docetaxel and the recently added cabazitaxel, all of which were proven to be promising anti-cancer drugs. Due to the over harvesting danger threatening the yew trees as well as the many challenges faced by taxane-based chemotherapy, new formulations, analogs and delivery systems are required. Here, we undertook a structured search of the bibliographical database PubMed for peerreviewed research papers relying on key words and date of publication and organized the information based on the method of taxane drug delivery. Papers retrieved were from journals with significant impact and comparable scope. A total of 126 papers were reviewed, 81 of which published work related to the taxane formulations and nanoparticles, and 22 focused on the analogs derived from the three taxanes. Although recent articles investigate the effectiveness of taxane formulations, most of these formulations are still at the pre-clinical level. However, many of the taxane analogs are currently in clinical trials as second line treatment of aggressive cancers or are used in combination with other chemotherapeutic drugs. The findings corroborate the importance of developing new drug delivery strategies and taxane analogs to improve the efficacy of currently used chemotherapeutic drugs. This finding is further supported by the FDA-approved formulation of paclitaxel that eliminates the need for toxic solvents for drug administration, and the docetaxel analog cabazitaxel which has decreased affinity for efflux pumps.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867323666160907124013
2016-12-01
2024-10-20
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867323666160907124013
Loading
  • Article Type: Research Article
Keyword(s): analogs; Anti-cancer; cabazitaxel; docetaxel; drug delivery; formulation; paclitaxel; taxanes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test