Skip to content
2000
Volume 21, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Numerous basic-helix-loop-helix (bHLH) transcription factors (TF) have been found to play important roles in tumor growth and progression. Elucidation of the common features of these TFs can pave the road to possible therapeutic intervention. The existing studies of possible inhibition of these TFs are concentrated on the development of peptides or small molecules that inhibit their dimerization or prevent their DNA binding. The bHLH TFs have striking similarity in many functionally important regions, such as the helical regions of TFs that interact with each other during dimerization and have complementary sets of residues on both sides of a dimer. These are hydrophobic residues along with anionic and cationic residues with complementary charges. Such complementarity also exists in other contact regions of the bHLH TFs. They also have a very specific set of positively charged residues on the surface, which would contact DNA. Such specificity defines a common concept for an in silico design of bHLH TFs inhibitors for a number of existing and important cancer-related TFs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867321666140414111333
2014-09-01
2025-06-22
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867321666140414111333
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test