Full text loading...
-
1, 25(OH)2D3 Inhibits Hepatocellular Carcinoma Development Through Reducing Secretion of Inflammatory Cytokines from Immunocytes
- Source: Current Medicinal Chemistry, Volume 20, Issue 33, Nov 2013, p. 4131 - 4141
-
- 01 Nov 2013
Abstract
Epidemiological and clinical studies have indicated that low vitamin D activity is not only associated with an increased cancer risk and a more aggressive tumor growth, but also connected with an aggravated liver damage caused by chronic inflammation. Meanwhile, increasing evidence has demonstrated that 1,25(OH)2D3 (the most biologically active metabolite of vitamin D) can inhibit inflammatory response in some chronic inflammatory associated cancer, which is considered to have the anti-tumor potency. However, the interaction between 1,25(OH)2D3 and inflammation during hepatocellular carcinoma (HCC) initiation and progression is not yet clear. Here, we report an anti-tumorigenesis effect of 1,25(OH)2D3 via decreasing inflammatory cytokine secretion in HCC and hypothesize the possible underlying mechanism. Firstly, we show that the enhanced tumor growth is associated with elevated inflammatory cytokine IL-6 and TNF-α in 1α(OH)ase gene-knockout mice. Secondly, 1,25(OH)2D3 can inhibit vitamin D receptor (VDR) shRNA interfered tumor cell growth through decreasing inflammatory cytokine secretion in vitro and in vivo. Finally, using p27kip1 gene knock-out mouse model, we demonstrate that the effect of 1,25(OH)2D3 in inhibiting immune cell related inflammatory cytokine secretion, exerts in a p27kip1 gene dependent way. Collectively, 1,25(OH)2D3 inhibits HCC development through up-regulating the expression of p27kip1 in immune cell and reducing inflammatory cytokine production.