Skip to content
2000
Volume 20, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Quinoline-based small molecules have been explored and being developed as anti-inflammatory agents targeting several pharmacological targets namely Phosphodiesterase 4 (PDE4), Transient Receptor Potential Vanilloid 1 (TRPV1), TNF-α converting enzyme (TACE) and Cyclooxygenase (COX). Efforts on Structure Activity Relationship (SAR) studies revealed that the pharmacological activities and target specificities of these quinoline derivatives were mainly dependent on the nature and position of substituent(s) present on the quinoline ring. For example, quinolines having carboxamide moiety displayed TRPV1 antagonism whereas that with carboxylic acid showed COX-inhibition. Similarly, quinolines possessing aniline moiety at C-4, aryl group at C-8 and oxazole ring at C-5 showed PDE4 inhibition. These quinoline derivatives were synthesized by using various s ynthetic approaches like Pd-mediated C-C (e.g. Suzuki, Sonogashira type coupling etc.) or C-N (the Buchwald-Hartwig type coupling) or C-S bond formation, AlCl3 induced C-C bond formation, traditional amide bond formation or amination, formation of ether linkage or additional heterocyclic rings. All these efforts resulted in the discovery of several quinoline-based anti-inflammatory agents for the potential treatment of acute as well as chronic inflammatory diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/09298673113209990170
2013-11-01
2025-06-26
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/09298673113209990170
Loading

  • Article Type:
    Research Article
Keyword(s): Anti-inflammatory drugs; COX; PDE4; quinoline; synthesis; TACE; TRPV1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test