Skip to content
2000
Volume 21, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Natural polycationic membrane-active peptides typically lack disulfide bonds and exhibit fusion, cellpenetrating, antimicrobial activities. They are mostly unordered in solution, but adopt a helical structure, when bound to phospholipid membranes. Structurally different are cardiotoxins (or cytotoxins, CTs) from cobra venom. They are fully β- structured molecules, characterized by the three-finger fold (TFF). Affinity of CTs to lipid bilayer was shown to depend on amino acid sequence in the tips of the three loops. In the present review, CT-membrane interactions are analyzed through the prism of data on binding of the toxins to phospholipid liposomes and detergent micelles, as well as their structural and computational studies in membrane mimicking environments. We assess different hydrophobicity scales to compare membrane partitioning of various CTs and their membrane effects. A comparison of hydrophobic/hydrophilic properties of CTs and linear polycationic peptides provides a key to their biological activity and creates a fundamental basis for rational design of new membrane-interacting compounds, including new promising drugs. For instance, from the viewpoint of the data obtained on model lipid membranes, cytotoxic activity of CTs against cancer cells is discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/09298673113206660315
2014-01-01
2025-01-18
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/09298673113206660315
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test