Skip to content
2000
Volume 18, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. HIF-1, a heterodimer consisting of a constitutively expressed β subunit and an oxygen-regulated α subunit, regulates a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The activity of HIF-1 is controlled by post-translational modifications on different amino acid residues of its subunits, mainly the alpha subunit. Besides in ischemic stroke (see review [1]), emerging evidence has revealed that HIF-1 activity and expression of its down-stream genes, such as vascular endothelial growth factor and erythropoietin, are altered in a range of neurodegenerative diseases. At the same time, experimental and clinical evidence has demonstrated that regulating HIF-1 might ameliorate the cellular and tissue damage in the neurodegenerative diseases. These new findings suggest HIF-1 as a potential medicinal target for the neurodegenerative diseases. This review focuses on HIF-1α protein modifications and HIF-1's potential neuroprotective roles in Alzheimer's (AD), Parkinson's (PD), Huntington's diseases (HD), and amyotrophic lateral sclerosis (ALS).

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986711797200426
2011-10-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986711797200426
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test