Skip to content
2000
Volume 18, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Bile acids (BAs) are a family of steroidal molecules derived from cholesterol and biosynthesised in the pericentral hepatocytes of the liver. Structurally they may be regarded as consisting of two components, a rigid steroid nucleus and a short aliphatic side chain terminating in an alcohol or carboxyl group. Traditionally BAs are known for their ability to act as solubilising agents in the gut, aiding in the absorption of dietary lipids through the formation of mixed micelles. However the identification of BAs as ligands of the farnesoid X receptor (FXR) has lead to the realisation that these molecules have a wider range of biological effects. BAs regulate lipid and glucose homeostasis through activation of the FXR and the G-protein coupled receptor, TGR5. They can activate apoptotic, inflammatory and carcinogenic signalling pathways. BAs have also been shown to have anti-inflammatory effects. Interestingly, BAs are not restricted to the hepatic-intestinal system. Plasma BAs regulate BA synthesis and metabolism. BAs have recently been identified in cerebrospinal fluid. The BA, ursodeoxycholic acid has a potential role as a neuroprotectant in Huntington's disease and its taurine conjugate exhibits neuro-protective effects in vitro that may be relevant to Alzheimer's disease. This renaissance in BA biology has lead to the development of numerous medicinal chemistry programmes with different therapeutic targets, using BAs as lead structures. BA derivatives with increased efficacy and potency for FXR and TGR5 hold significant promise for the treatment of metabolic disorders. The peculiar effects of BAs on cell viability have been exploited for the design of selective cytocidal agents for treatment of various cancers. BA derivatives have also been screened with much success for anti-microbial and antifungal properties. Other targets include carbonic anhydrase for treatment of glaucoma and the glucocorticoid receptor for antiinflammatory effects. In this review interesting recent developments in the medicinal chemistry of these eclectic substances will be discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986711796957266
2011-09-01
2025-05-07
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986711796957266
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test