Skip to content
2000
Volume 18, Issue 13
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Nicotinamide adenine dinucleotide (NAD+) has a crucial role in many cellular processes, both as a coenzyme for redox reactions and as a substrate to donate ADP-ribose units. Thus, enzymes involved in NAD+ metabolism are attractive targets for drug discovery against a variety of human diseases. Herein we focus on two of them: NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK). NMNAT is a key enzyme in all organisms catalyzing coupling of ATP and NMN or NaMN yielding NAD or NaAD, respectively. NADKs are ubiquitous enzymes involved in the last step of the biosynthesis of NADP. They phosphorylate NAD to produce NADP using ATP (or inorganic polyphosphates) in the presence of Mg2+. No other pathway of NADP biosynthesis has been found in prokaryotic or eukaryotic cells. In this review we provide a comprehensive summary of NMNAT and NADK inhibitors highlighting their chemical modifications by different synthetic approaches, and structure-activity relationships depending on their potential therapeutic applications

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986711795590048
2011-05-01
2025-05-08
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986711795590048
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test