Skip to content
2000
Volume 18, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The continuous preventive measures and control of tuberculosis are often hampered by re-emergence of multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis. A novel drug approach is desperately needed to combat the global threat posed by MDR strains. In spite of current advancement in biological techniques viz. microarray and proteomics data for tuberculosis, no such potent drug has been developed in the past decades yet. Therefore, mycolic acid is an essential constituent which is involved in the formation of cell wall of Mycobacterium species. The biosynthesis of mycolic acid is involved in two fatty acid synthase systems, the multifunctional polypeptide fatty acid synthase I (FASI) which performs de novo fatty acid synthesis and dissociate FASII system. FASII system consists of monofunctional enzymes and acyl carrier protein (ACP), elongating FASI products to long chain mycolic acid precursor. In this review, the β-ketoacyl-ACP synthases (fadH, kasA and kasB) are distinct and play a vital role in mycolic acid synthesis, cell wall synthesis, biofilm formation and also pathogenesis. On the basis of substantial observation we suggest that these enzymes may be used as promising and attractive targets for novel anti-TB drugs designing and discovery.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986711795029636
2011-03-01
2024-10-15
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986711795029636
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test