Skip to content
2000
Volume 16, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Long term caloric restriction is known to counteract aging and extend lifespan in several organisms from yeasts to mammals. Recent research has provided solid ground to the concept that limiting calorie intake slows down brain aging and protects from age-related neurodegenerative diseases. The present review summarizes the most relevant among these data and highlights some genetic and molecular mechanisms responsible for caloric restriction-related neuroprotection. To understand these mechanisms is important because this information makes them potential targets for therapeutic intervention aimed at reproducing the metabolic, genetic and molecular features responsible for the beneficial effect of caloric restriction. Most promising among these targets are neurotrophins, such as BDNF, transcription factors, such as FoxO and PPAR, anti-aging proteins, such as sirtuins, and caloric restriction mimetics acting on oxidative stress and energy metabolism. Notwithstanding the complexity of any therapeutic strategy aimed at reproducing the beneficial effects of caloric restriction, due to multiplicity of the cellular pathways involved in the responses, a great expansion of medicinal chemistry research in this field is expected in the next future.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986709787002637
2009-01-01
2025-05-05
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986709787002637
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test