Skip to content
2000
Volume 14, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Alzheimer's disease (AD) is the most prevalent form of dementia, and its effective disease modifying therapies are desperately needed. Promotion of non-amyloidogenic alpha (α)-secretase cleavage of amyloid precursor protein (APP) to release soluble sAPPα, based on the most widely accepted “amyloid model” as a plausible mechanism for AD treatment, is the focus of this review. Modulation of α-secretase or “a disintegrin and metalloprotease (ADAM)”s activity via protein kinase C (PKC), calcium ion (Ca2+), tyrosine kinase (TK), MAP kinase (MAPK), and hormonal signaling, which regulate catabolic processing of APP, are discussed. The inhibition of amyloidogenic processing of APP by the beta (β)-and gamma (γ)-secretase has been considered till now a promising strategy to treat AD. But β- and γ-secretase inhibitors, along with the available therapeutic tools for AD, have side effects. These challenges can be circumvented to certain extent; but activation of sAPPα release appears to be a potential alternative strategy to reduce cerebral amyloidosis. Drug screens have been performed to identify therapeutics for AD, but an effective screening strategy to isolate activators of α-secretase has been rarely reported. Novel reporter-based screens targeted toward APP mRNA 5' untranslated region (UTR), followed by counterscreens to detect α-secretase stimulators, could be important in detecting compounds to promote sAPPα release and reduce amyloid beta (Aβ) buildup. The primary inflammatory cytokine interleukin-1, which stimulates APP 5'UTR-directed translation of cell-associated APP, enhances processing to sAPPα in astrocytes and co-activates ADAM-10/ADAM-17 through MAPK signaling; thus illustrating a novel pathway that could serve as therapeutic model for AD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986707782360060
2007-11-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986707782360060
Loading

  • Article Type:
    Research Article
Keyword(s): ADAM activators; APP proteolysis; drug screens; interleukin-1; signaling; soluble sAPPα
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test