Skip to content
2000
Volume 14, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The loss of the neurotransmitter noradrenaline occurs constantly in Parkinson's disease. This is supposed to worsen disease progression, either by increasing the vulnerability of dopamine-containing neurons or by reducing the recovery once they are damaged. Novel data also show that the loss of noradrenergic innervation facilitates the onset of dyskinesia occurring in Parkinsonian patients during dopamine replacement therapy. In the first part of the manuscript we review the evidence showing the loss of the noradrenergic system as an early event in the natural history of Parkinsonism. This evidence is discussed in light of novel reports showing the deleterious effects produced by the noradrenergic deficit on the survival of nigral dopamine neurons. In particular, we analyze the biochemical and morphological changes produced in the nigrostriatal system by the loss of endogenous noradrenaline. In a dedicated paragraph we specifically evaluate the cross affinity between dopamine and noradrenaline systems. In fact, this is critical during dopamine/noradrenaline replacement therapy in Parkinson's disease. In the last part, we overview novel therapeutic approaches aimed at restoring the activation of noradrenaline receptors to reduce the dyskinesia occurring in the treatment of Parkinson's disease.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986707781745550
2007-09-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986707781745550
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test