Skip to content
2000
Volume 14, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

A combination of different HIV inhibitors into a single molecular entity is a strategy that is growing in popularity in HIVchemotherapy research. The high levels of resistance elicited by both nucleoside and non-nucleoside reverse transcriptase inhibitors has prompted the design of double-drugs combining these two entities with the aim of addressing the emergence of resistance. The strategy involves combining two different inhibitors into a single chemical entity via a linker, with the aim of improving the physicochemical characteristics of the individual compounds. Linkers may be sub-divided into cleavable and non-cleavable. While the former result in regeneration of the parent drugs of the double-drug once in the cell cytoplasm, the latter type is designed to allow the double-drug to target two active sites in a simultaneous or bifunctional fashion, which are located in close proximity. The linkers have been attached at the C-5', C-5 or N-3 positions of the nucleoside, and in some of the substrates synthesized, a synergistic anti-HIV activity has been observed. This review focuses on the design and synthesis of anti-HIV double-drugs reported to date.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986707780597952
2007-05-01
2025-05-01
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986707780597952
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test