Skip to content
2000
Volume 14, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

ATP-sensitive potassium (KATP) channels have important functions through their coupling of cellular energetic networks and their ability to decode metabolic signals, and they are implicated in diseases of many organs. KATP channels are formed by the physical association between the inwardly rectifier potassium channels (Kir6.x) and the regulatory sulfonylurea receptor subunit (SUR), which form a hetero-octameric complex. Different subtypes of KATP channels exist in various tissues. KATP channel openers (KCOs) are classified into nine chemical families according to their molecular structures: (1) benzopyrans, (2) cyanoguanidines, (3) thioformamides, (4) pyrimidine derivatives, (5) pyridine derivatives, (6) benzothiadiazines, (7) dihydropyridines, (8) nicotinamide derivatives, and (9) aliphatic amines. Although the model also predicts that KCOs have four co-binding areas, it was hypothesized that the main contribution lies in the binding domain of hydrophobicity of the side chain. A series of compounds containing the skeleton of the aliphatic secondary amines as a side chain was designed. It was found that N-isopropyl 2,3-dimethyl-2- butylamine (iptakalim, 91) is a novel KCOs. Iptakalim regulates the pore selectively of the inwardly rectifier potassium channel and dilates smaller arteries, but has little effect on vasodilatation of the aorta. Iptakalim administered p.o. has selective and long-lasting antihypertensive effects in hypertensive animals and does not induce tolerance, but has little effect on blood pressure in normotensive animals. Meanwhile, it also reverses cardiovascular remodeling and protects the brain and kidney against damage caused by hypertension in animal models. Iptakalim is in phase II clinical trials now and has a promising future as a treatment for hypertension.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986707779313390
2007-01-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986707779313390
Loading

  • Article Type:
    Research Article
Keyword(s): Iptakalim; KATP; KCO
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test