Skip to content
2000
Volume 13, Issue 26
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

A regular intake of polyphenolic agents widely found in fruits and vegetables is believed to decrease the incidence of certain forms of cancer, due in part to their ability to act as antinitrosating agents capable of lowering the impact of toxic nitrosation processes and carcinogenic nitrosamine formation within the acidic environment of the stomach. As a result, the study of the interactions between reactive nitrogen species and phenolic antioxidants has emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. The burst of interest in (poly)phenolic cancer chemopreventive agents of dietary origin is exemplified by the exponential growth of scientific literature on green tea catechins, as well as on hydroxycinnamates, hydroxytyrosol, flavonoids and other phenolic compounds of the Mediterranean diet, currently regarded as a cultural model for dietary improvement. However, as is often the case with rapidly growing fields, most of these advances have not yet been assessed nor properly integrated into a well defined conceptual framework, whereby several aspects of the chemistry underlying their mechanism of action have remained either obscure or have been taken for granted without sufficient experimental support. The objective of this paper is to provide an account of the chemical mechanisms through which polyphenolic compounds of dietary origin may react with nitrite-derived nitrosating species under conditions that model those occurring in the stomach and other acidic biological compartments. The relevance of this chemistry to the actual role of these substances in DNA protection and cancer prevention remains a critical goal for future studies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986706778742936
2006-11-01
2025-05-10
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986706778742936
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test