Skip to content
2000
Volume 12, Issue 14
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The mitotic cell cycle is a tightly regulated process that ensures the correct division of one cell into two daughter cells. Progress along the different phases of the cell cycle is positively regulated by the sequential activation of a family of serine-threonine kinases called CDKs (Cyclin Dependent Kinases). Their activity is counteracted by small proteins known as CDK inhibitors (CKI) that ensure the correct timing of CDK activation in the different phases of the cell cycle. The present review will deal with the role of one of this CKI, p27kip1, in human cancer, focusing in particular on the mechanisms underlying its functional inactivation in tumor cells. p27kip1 protein downregulation is usually achieved by proteasomal degradation and is often correlated to a worse prognosis in several types of human cancers, resulting in the reduction of disease free and overall survival. More recently, it has been proposed that p27kip1 protein, rather than degraded, can be functionally inactivated. The mechanisms and the implications of these two types of p27kip1 deregulation will be discussed and some potential therapeutic approaches targeting p27kip1 functions will be proposed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867054367149
2005-07-01
2025-05-02
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867054367149
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test