Skip to content
2000
Volume 12, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

It has long been considered that mitochondrial DNA disease is a rare genetic disorder causing neuromyopathy. However, alterations of mitochondrial DNA recently have been recognized to play an important role in the pathogenesis of so-called common diseases such as heart failure, diabetes, and cancer. Although some of these alterations are inherited, more and more attention is being focused on the accumulation of mitochondrial DNA mutations in somatic cells, particularly terminally differentiated cells such as cardiomyocytes and neurons that occurs with age. Mitochondrial DNA is more vulnerable to alteration than nuclear DNA, mainly for two reasons. First, mitochondria are a major source of intracellular reactive oxygen species (ROS). Therefore mitochondrial DNA is under much stronger oxidative stress than is nuclear DNA. Second, mitochondria have a matrix-side negative membrane potential for oxidative phosphorylation. This membrane potential concentrates lipophilic cations inside mitochondria up to ~1,000-fold. Unfortunately, some therapeutic reagents are lipophilic cations, and such exogenously added chemicals are prone to damage mitochondria. AZT, an anti-HIV drug, causes mitochondrial myopathy as a side effect, which is a typical example of how chemotherapeutics adversely affect metabolism of mitochondrial DNA. In this review, we focus on ROS and chemical damage of mitochondrial DNA in common diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867053363081
2005-02-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867053363081
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test