Skip to content
2000
Volume 9, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

A considerable body of evidence has accumulated in recent years implicating the ß-amyloid protein (Aß) in the etiology of Alzheimer's disease (AD). The highly hydrophobic Aß can nucleate and form neurotoxic fibrils that are the principal components of the cerebral plaques characteristic of AD. Aß is formed from the amyloid-ßprecursor protein (APP) through two protease activities. First, ß-secretase cleaves APP at the Aß N-terminus, resulting in a soluble, secreted APP derivative (ß-APPs) and a 12 kDa membrane-retained C-terminal fragment. The latter is further processed to Aß by γ secretases, which cleave within the single transmembrane region. Other APP molecules can be cleaved by α-secretase within the Aß region, thus precluding Aß formation. Both β- and γ- secretase have become prime targets for the development of therapeutic agent that reduce Aβ production. β-Secretase has recently been identified as a new membrane-anchored aspartyl protease in the cathepsin D family. Inhibitor profiling, site-directed mutagenesis, and affinity labeling together have suggested that the multi-pass presenilins are γ-secretases, novel intramembrane-cleaving aspartyl proteases activated through autoproteolysis. In this article, we review the current knowledge of γ-secretase biochemistry and cell biology and the development of inhibitors of this important therapeutic target.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867023370185
2002-06-01
2025-05-06
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867023370185
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test