Skip to content
2000
image of Decoding Colorectal Cancer: Key Genes and Pathways in the Chinese Population Revealed

Abstract

Background

As the leading cause of cancer-related deaths globally, colorectal cancer (CRC) ranks third in prevalence. Gene Expression Omnibus (GEO) offers clinicians and bioinformaticians an accessible platform for genomic research across various cancer types, with a particular emphasis on CRC.

Objective

We aim to uncover key genes and pathways in the Chinese CRC population.

Methods

We identified differentially expressed genes (DEGs) in CRC utilizing four microarray datasets sourced from the GEO database, all specifically from the Chinese population. Functional enrichment analysis was conducted to uncover the molecular mechanisms at play in CRC. The PPI network and CytoHubba tools were employed to identify key genes linked to CRC, with further validation through databases such as Gene Expression Profiling Interactive Analysis (GEPIA), ONCOMINE, and the Human Protein Atlas (HPA).

Results

Our analysis identified 188 DEGs with overlapping significance, comprising 97 up-regulated and 91 down-regulated genes. Gene Ontology (GO) analysis indicated that up-regulated DEGs were predominantly involved in the extracellular space. In contrast, the down-regulated ones were linked to bicarbonate transport and extracellular exosomes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis highlighted the involvement of up-regulated DEGs in cytokine-cytokine receptor interactions and the TNF signaling pathway. In contrast, the down-regulated genes were associated with nitrogen metabolism and bicarbonate reclamation in the proximal tubule. Notably, the transcriptional levels of CCL20, CDC20, CXCL1, CXCL2, CXCL5, NEK2, and PPBP were elevated in CRC tissues compared to normal tissues. In addition, CXCL12 showed a decreased expression. Additionally, the translational levels of CDC20 and PPBP were found to be higher in CRC tissues.

Conclusion

Eight genes (CCL20, CDC20, CXCL1, CXCL12, CXCL2, CXCL5, NEK2, and PPBP) were identified as potential diagnostic indicators for CRC. The identified pathways, such as cytokine-cytokine receptor interactions and TNF signaling, along with nitrogen metabolism and bicarbonate reclamation in the proximal tubule, are hypothesized to have a role in the genesis and progression of CRC. This study provides unique insights into the etiology and progression of CRC within the Chinese population.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673360490250225230115
2025-03-03
2025-05-28
Loading full text...

Full text loading...

References

  1. Wu Q. Wang D. Zhang Z. Wang Y. Yu W. Sun K. Maimela N. Sun Z. Liu J. Yuan W. Zhang Y. DEFB4A is a potential prognostic biomarker for colorectal cancer. Oncol. Lett. 2020 20 4 1 10.3892/ol.2020.11975 32863927
    [Google Scholar]
  2. Guo L. Chen H. Wang G. Lyu Z. Feng X. Wei L. Li X. Wen Y. Lu M. Chen Y. Shi J. Ren J. Lin C. Yu X. Chen S. Wu S. Li N. Dai M. He J. Development of a risk score for colorectal cancer in Chinese males: A prospective cohort study. Cancer Med. 2020 9 2 816 823 10.1002/cam4.2734 31773920
    [Google Scholar]
  3. Zhang J. Xu H. Zheng L. Yu J. Chen Q. Cao X. Liu S. Jose Gonzalez M. Guo L. Sun X. Zhang S. Qiao Y. Determinants of participation and detection rate of colorectal cancer from a population-based screening program in China. Front. Oncol. 2020 10 1173 10.3389/fonc.2020.01173 32850337
    [Google Scholar]
  4. Chen W. Zheng R. Baade P.D. Zhang S. Zeng H. Bray F. Jemal A. Yu X.Q. He J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016 66 2 115 132 10.3322/caac.21338 26808342
    [Google Scholar]
  5. Ding S. Xu S. Fang J. Jiang H. The protective effect of polyphenols for colorectal cancer. Front. Immunol. 2020 11 1407 10.3389/fimmu.2020.01407 32754151
    [Google Scholar]
  6. O’Cathail S.M. Wu C.H. Lewis A. Holmes C. Hawkins M.A. Maughan T. NRF2 metagene signature is a novel prognostic biomarker in colorectal cancer. Cancer Genet. 2020 248-249 1 10 10.1016/j.cancergen.2020.08.006 32871287
    [Google Scholar]
  7. The cancer cenome atlas network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012 487 7407 330 337 10.1038/nature11252 22810696
    [Google Scholar]
  8. Zeng Z. Yan Q. Chen G. Zhang X. Huang J. Fu K. Peng X. Xiao S. Characteristics of colorectal carcinoma patients with PMS2 defects detected by immunohistochemistry. Eur. J. Cancer Prev. 2020 30 3 251 32826709
    [Google Scholar]
  9. Lochhead P. Chan A.T. Nishihara R. Fuchs C.S. Beck A.H. Giovannucci E. Ogino S. Etiologic field effect: Reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol. 2015 28 1 14 29 24925058
    [Google Scholar]
  10. Soffer S. Klang E. Tau N. Zemet R. Ben-Horin S. Barash Y. Kopylov U. Evolution of colorectal cancer screening research in the past 25 years: Text-mining analysis of citation trends and topics. Therap. Adv. Gastroenterol. 2020 13 1756284820941153 10.1177/1756284820941153 32733602
    [Google Scholar]
  11. Li Y. Zang H. Zhang X. Huang G. circ_0136666 facilitates the progression of colorectal cancer via miR-383/CREB1 Axis. Cancer Manag. Res. 2020 12 6795 6806 10.2147/CMAR.S251952 32821160
    [Google Scholar]
  12. Li J. Huang L. Zhao H. Yan Y. Lu J. The role of interleukins in colorectal cancer. Int. J. Biol. Sci. 2020 16 13 2323 2339 10.7150/ijbs.46651 32760201
    [Google Scholar]
  13. Gerner E.W. Bruckheimer E. Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J. Biol. Chem. 2018 293 48 18770 18778 10.1074/jbc.TM118.003343 30355737
    [Google Scholar]
  14. Siegel R.L. Miller K.D. Fedewa S.A. Ahnen D.J. Meester R.G.S. Barzi A. Jemal A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017 67 3 177 193 10.3322/caac.21395 28248415
    [Google Scholar]
  15. Yiu A.J. Yiu C.Y. Biomarkers in colorectal cancer. Colorectal Dis. 2016 36 3 1093 1102 26977004
    [Google Scholar]
  16. Gong B. Kao Y. Zhang C. Sun F. Gong Z. Chen J. Identification of Hub genes related to carcinogenesis and prognosis in colorectal cancer based on integrated bioinformatics. Mediators Inflamm. 2020 2020 1 14 10.1155/2020/5934821 32351322
    [Google Scholar]
  17. Lu W. Xie H. Yuan C. Li J. Li Z. Wu A. Identification of potential biomarkers and candidate small molecule drugs in glioblastoma. Cancer Cell Int. 2020 20 1 419 10.1186/s12935‑020‑01515‑1 32874133
    [Google Scholar]
  18. Sun Q. Liu P. Long B. Zhu Y. Liu T. Screening of significant biomarkers with poor prognosis in hepatocellular carcinoma via bioinformatics analysis. Medicine (Baltimore) 2020 99 32 e21702 10.1097/MD.0000000000021702 32769939
    [Google Scholar]
  19. Dai G-P. Wang L-P. Wen Y-Q. Ren X-Q. Zuo S-G. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis. Oncol. Lett. 2020 19 1 388 398 31897151
    [Google Scholar]
  20. Li M. Wang X. Liu J. Mao X. Li D. Wang Z. Tang Y. Wu S. Identification of core prognosis-related candidate genes in chinese gastric cancer population based on integrated bioinformatics. BioMed Res. Int. 2020 2020 1 8859826 10.1155/2020/8859826 33381592
    [Google Scholar]
  21. Nathan B. Prabahar A. Mohammed S. Network analysis of anti-inflammatory phytochemicals and omics data for rheumatoid arthritis. Curr. Computeraided Drug Des. 2023 19 5 356 366 10.2174/1573409919666230106125058
    [Google Scholar]
  22. Ding J. Zhang Y. Analysis of key GO terms and KEGG pathways associated with carcinogenic chemicals. Comb. Chem. High Throughput Screen. 2018 20 10 861 871 10.2174/1386207321666171218120133 29256346
    [Google Scholar]
  23. Mahmoudi A. Butler A.E. De Vincentis A. Jamialahmadi T. Sahebkar A. Microarray-based detection of critical overexpressed genes in the progression of hepatic fibrosis in non-alcoholic fatty liver disease: A protein-protein interaction network analysis. Curr. Med. Chem. 2024 31 23 3631 3652 10.2174/0929867330666230516123028 37194229
    [Google Scholar]
  24. Gao M. Kong W. Huang Z. Xie Z. Identification of key genes related to lung squamous cell carcinoma using bioinformatics analysis. Int J. Mol. Sci 2020 21 8 2994 10.3390/ijms21082994
    [Google Scholar]
  25. Bader G.D. Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003 4 1 2 10.1186/1471‑2105‑4‑2 12525261
    [Google Scholar]
  26. Shen P. He X. Lan L. Hong Y. Lin M. Identification of cell division cycle 20 as a candidate biomarker and potential therapeutic target in bladder cancer using bioinformatics analysis. Biosci. Rep. 2020 40 7 BSR20194429 10.1042/BSR20194429 32677673
    [Google Scholar]
  27. Tian Y. Xie Y. Yi G. Wu F. Dang X. Bai F. Wang J. Zhang D. Prognostic value and therapeutic significance of CCL chemokines in gastric cancer. Curr. Med. Chem. 2024 31 42 7043 7058 10.2174/0109298673315146240731100101 39129286
    [Google Scholar]
  28. Li C.Y. Cai J.H. Tsai J.J.P. Wang C.C.N. Identification of Hub genes associated with development of head and neck squamous cell carcinoma by integrated bioinformatics analysis. Front. Oncol. 2020 10 681 10.3389/fonc.2020.00681 32528874
    [Google Scholar]
  29. Li J. Wang Y. Wang X. Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: Evidence from integrated bioinformatics analysis. World J. Surg. Oncol. 2020 18 1 50 10.1186/s12957‑020‑01817‑8 32127012
    [Google Scholar]
  30. Kakinuma T. Hwang S.T. Chemokines, chemokine receptors, and cancer metastasis. J. Leukoc. Biol. 2006 79 4 639 651 10.1189/jlb.1105633 16478915
    [Google Scholar]
  31. le Rolle A.F. Chiu T.K. Fara M. Shia J. Zeng Z. Weiser M.R. Paty P.B. Chiu V.K. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J. Transl. Med. 2015 13 1 199 10.1186/s12967‑015‑0555‑4 26104296
    [Google Scholar]
  32. Lv J. Li L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis. BioMed Res. Int. 2019 2019 1 13 10.1155/2019/1545680 31781593
    [Google Scholar]
  33. Chen C. Xu Z.Q. Zong Y.P. Ou B.C. Shen X.H. Feng H. Zheng M.H. Zhao J.K. Lu A.G. CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal cancer. Cell Death Dis. 2019 10 3 178 10.1038/s41419‑019‑1431‑6 30792394
    [Google Scholar]
  34. Ma W. Chen X. Wu X. Li J. Mei C. Jing W. Teng L. Tu H. Jiang X. Wang G. Chen Y. Wang K. Wang H. Wei Y. Liu Z. Yuan Y. Long noncoding RNA SPRY4-IT1 promotes proliferation and metastasis of hepatocellular carcinoma via mediating TNF signaling pathway. J. Cell. Physiol. 2020 235 11 7849 7862 10.1002/jcp.29438 31943198
    [Google Scholar]
  35. Brand S. Olszak T. Beigel F. Diebold J. Otte J.M. Eichhorst S.T. Göke B. Dambacher J. Cell differentiation dependent expressed CCR6 mediates ERK-1/2, SAPK/JNK, and Akt signaling resulting in proliferation and migration of colorectal cancer cells. J. Cell. Biochem. 2006 97 4 709 723 10.1002/jcb.20672 16215992
    [Google Scholar]
  36. Gayyed M.F. El-Maqsoud N.M.R.A. Tawfiek E.R. El Gelany S.A.A. Rahman M.F.A. A comprehensive analysis of CDC20 overexpression in common malignant tumors from multiple organs: Its correlation with tumor grade and stage. Tumour Biol. 2016 37 1 749 762 10.1007/s13277‑015‑3808‑1 26245990
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673360490250225230115
Loading
/content/journals/cmc/10.2174/0109298673360490250225230115
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: TNF signaling pathway ; human protein atlas ; biomarker ; Colorectal cancer ; GEO ; chinese population
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test