Skip to content
2000
image of Machine Learning-based Gene Biomarker Identification for Improving Prognosis and Therapy in Hepatocellular Carcinoma

Abstract

Introduction

Traditional clinical evaluations based on pathological classification have shown limited effectiveness in predicting prognosis and guiding treatment for patients with hepatocellular carcinoma (HCC). This study aims to identify a robust molecular biomarker for improving prognosis and therapy in HCC.

Methods

The International Cancer Genome Consortium (ICGC), Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) provided expression data and clinicopathological information for several cohorts. First, Cox regression analysis and differentially expressed analysis were performed to identify robust prognostic genes. Next, machine learning algorithms, including 101 statistical models, were employed to pinpoint key genes in HCC. Single-cell sequencing analysis was conducted to explore the potential subcellular functions of each key gene. Based on these findings, an HCC Prognosis-Related Index (HPRI) was developed from the identified key genes, and HPRI-based nomogram models were validated across multiple cohorts. Additionally, tumor microenvironment analysis and drug sensitivity analysis were performed further to assess the clinical significance of the HPRI in HCC.

Results

A total of 36 robust prognostic genes with differential expression in HCC were identified, from which seven key genes-, , , , , , and -were filtered using machine learning algorithms. Except for , all these genes were highly expressed in malignant cells, followed by fibroblasts. Notably, we developed the HPRI based on the key genes and validated its clinical relevance. Results demonstrated that the HPRI and HPRI-derived nomogram models had good predictive performance across multiple cohorts. Following tumor microenvironment analysis revealed that a high HPRI was linked to a higher likelihood of immune evasion. Drug sensitivity analysis suggested that patients with a high HPRI might benefit from chemotherapeutic agents like sorafenib, as well as novel compounds such as ML323 and MK-1775.

Conclusion

Our study demonstrates a well-rounded approach by integrating gene expression, machine learning, tumor microenvironment analysis, and drug sensitivity profiling. HPRI may serve as a promising predictor for guiding prognosis and personalized treatment in HCC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673359092250304031435
2025-04-03
2025-05-24
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Sun L. Yang Y. Li Y. Li Y. Zhang B. Shi R. The past, present, and future of liver cancer research in China. Cancer Lett. 2023 574 216334 10.1016/j.canlet.2023.216334 37574184
    [Google Scholar]
  3. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  4. Llovet J.M. Castet F. Heikenwalder M. Maini M.K. Mazzaferro V. Pinato D.J. Pikarsky E. Zhu A.X. Finn R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022 19 3 151 172 10.1038/s41571‑021‑00573‑2 34764464
    [Google Scholar]
  5. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  6. Rizzo A. Ricci A.D. Challenges and future trends of hepatocellular carcinoma immunotherapy. Int. J. Mol. Sci. 2022 23 19 11363 10.3390/ijms231911363 36232663
    [Google Scholar]
  7. Rizzo A. Ricci A.D. Brandi G. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update. J. Pers. Med. 2022 12 11 1788 10.3390/jpm12111788 36579504
    [Google Scholar]
  8. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Support Care Cancer 2023 31 12 624
    [Google Scholar]
  9. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers 2024 16 10 1835 10.3390/cancers16101835 38791914
    [Google Scholar]
  10. Hutter C. Zenklusen J.C. The cancer genome atlas: Creating lasting value beyond its data. Cell 2018 173 2 283 285 10.1016/j.cell.2018.03.042 29625045
    [Google Scholar]
  11. Fonseca-Montaño M.A. Blancas S. Herrera-Montalvo L.A. Hidalgo-Miranda A. Cancer genomics. Arch. Med. Res. 2022 53 8 723 731 10.1016/j.arcmed.2022.11.011 36460546
    [Google Scholar]
  12. Xie H. Shi M. Liu Y. Cheng C. Song L. Ding Z. Jin H. Cui X. Wang Y. Yao D. Wang P. Yao M. Zhang H. Identification of m6A- and ferroptosis-related lncRNA signature for predicting immune efficacy in hepatocellular carcinoma. Front. Immunol. 2022 13 914977 10.3389/fimmu.2022.914977 36032107
    [Google Scholar]
  13. Chen Y. Huang W. Ouyang J. Wang J. Xie Z. Identification of anoikis-related subgroups and prognosis model in liver hepatocellular carcinoma. Int. J. Mol. Sci. 2023 24 3 2862 10.3390/ijms24032862 36769187
    [Google Scholar]
  14. Su Y. Meng L. Ge C. Liu Y. Zhang C. Yang Y. Tian W. Tian H. PSMD9 promotes the malignant progression of hepatocellular carcinoma by interacting with c-Cbl to activate EGFR signaling and recycling. J. Exp. Clin. Cancer Res. 2024 43 1 142 10.1186/s13046‑024‑03062‑3 38745188
    [Google Scholar]
  15. Zhengdong A. Xiaoying X. Shuhui F. Rui L. Zehui T. Guanbin S. Li Y. Xi T. Wanqian L. Identification of fatty acids synthesis and metabolism-related gene signature and prediction of prognostic model in hepatocellular carcinoma. Cancer Cell Int. 2024 24 1 130 10.1186/s12935‑024‑03306‑4 38584256
    [Google Scholar]
  16. Deo R.C. Machine learning in medicine. Circulation 2015 132 20 1920 1930 10.1161/CIRCULATIONAHA.115.001593 26572668
    [Google Scholar]
  17. Peiffer-Smadja N. Rawson T.M. Ahmad R. Buchard A. Georgiou P. Lescure F.X. Birgand G. Holmes A.H. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin Microbiol Infect 2020 26 5 584 595
    [Google Scholar]
  18. Banerjee J. Taroni J.N. Allaway R.J. Prasad D.V. Guinney J. Greene C. Machine learning in rare disease. Nat. Methods 2023 20 6 803 814 10.1038/s41592‑023‑01886‑z 37248386
    [Google Scholar]
  19. Swanson K. Wu E. Zhang A. Alizadeh A.A. Zou J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023 186 8 1772 1791 10.1016/j.cell.2023.01.035 36905928
    [Google Scholar]
  20. Roessler S. Jia H.L. Budhu A. Forgues M. Ye Q.H. Lee J.S. Thorgeirsson S.S. Sun Z. Tang Z.Y. Qin L.X. Wang X.W. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010 70 24 10202 10212 10.1158/0008‑5472.CAN‑10‑2607 21159642
    [Google Scholar]
  21. Ye Y. Guo J. Xiao P. Ning J. Zhang R. Liu P. Yu W. Xu L. Zhao Y. Yu J. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Lett. 2020 469 310 322 10.1016/j.canlet.2019.11.001 31705929
    [Google Scholar]
  22. Colaprico A. Silva T.C. Olsen C. Garofano L. Cava C. Garolini D. Sabedot T.S. Malta T.M. Pagnotta S.M. Castiglioni I. Ceccarelli M. Bontempi G. Noushmehr H. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016 44 8 e71 10.1093/nar/gkv1507 26704973
    [Google Scholar]
  23. Davis S. Meltzer P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007 23 14 1846 1847 10.1093/bioinformatics/btm254 17496320
    [Google Scholar]
  24. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  25. Liu Z. Liu L. Weng S. Guo C. Dang Q. Xu H. Wang L. Lu T. Zhang Y. Sun Z. Han X. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat. Commun. 2022 13 1 816 10.1038/s41467‑022‑28421‑6 35145098
    [Google Scholar]
  26. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  27. Mayakonda A. Lin D.C. Assenov Y. Plass C. Koeffler H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018 28 11 1747 1756 10.1101/gr.239244.118 30341162
    [Google Scholar]
  28. Han Y. Wang Y. Dong X. Sun D. Liu Z. Yue J. Wang H. Li T. Wang C. TISCH2: Expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023 51 D1 D1425 D1431 10.1093/nar/gkac959 36321662
    [Google Scholar]
  29. Wilkerson M.D. Hayes D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010 26 12 1572 1573 10.1093/bioinformatics/btq170 20427518
    [Google Scholar]
  30. Blanche P. Dartigues J.F. Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med. 2013 32 30 5381 5397 10.1002/sim.5958 24027076
    [Google Scholar]
  31. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  32. Zeng D. Ye Z. Shen R. Yu G. Wu J. Xiong Y. Zhou R. Qiu W. Huang N. Sun L. Li X. Bin J. Liao Y. Shi M. Liao W. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front. Immunol. 2021 12 687975 10.3389/fimmu.2021.687975 34276676
    [Google Scholar]
  33. Sturm G. Finotello F. Petitprez F. Zhang J.D. Baumbach J. Fridman W.H. List M. Aneichyk T. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 2019 35 14 i436 i445 10.1093/bioinformatics/btz363 31510660
    [Google Scholar]
  34. Hu F.F. Liu C.J. Liu L.L. Zhang Q. Guo A.Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief. Bioinform. 2021 22 3 bbaa176 10.1093/bib/bbaa176 32814346
    [Google Scholar]
  35. Jiang P. Gu S. Pan D. Fu J. Sahu A. Hu X. Li Z. Traugh N. Bu X. Li B. Liu J. Freeman G.J. Brown M.A. Wucherpfennig K.W. Liu X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018 24 10 1550 1558 10.1038/s41591‑018‑0136‑1 30127393
    [Google Scholar]
  36. Thorsson V. Gibbs D.L. Brown S.D. Wolf D. Bortone D.S. Ou Yang T.H. Porta-Pardo E. Gao G.F. Plaisier C.L. Eddy J.A. Ziv E. Culhane A.C. Paull E.O. Sivakumar I.K.A. Gentles A.J. Malhotra R. Farshidfar F. Colaprico A. Parker J.S. Mose L.E. Vo N.S. Liu J. Liu Y. Rader J. Dhankani V. Reynolds S.M. Bowlby R. Califano A. Cherniack A.D. Anastassiou D. Bedognetti D. Mokrab Y. Newman A.M. Rao A. Chen K. Krasnitz A. Hu H. Malta T.M. Noushmehr H. Pedamallu C.S. Bullman S. Ojesina A.I. Lamb A. Zhou W. Shen H. Choueiri T.K. Weinstein J.N. Guinney J. Saltz J. Holt R.A. Rabkin C.S. Lazar A.J. Serody J.S. Demicco E.G. Disis M.L. Vincent B.G. Shmulevich I. Caesar-Johnson S.J. Demchok J.A. Felau I. Kasapi M. Ferguson M.L. Hutter C.M. Sofia H.J. Tarnuzzer R. Wang Z. Yang L. Zenklusen J.C. Zhang J.J. Chudamani S. Liu J. Lolla L. Naresh R. Pihl T. Sun Q. Wan Y. Wu Y. Cho J. DeFreitas T. Frazer S. Gehlenborg N. Getz G. Heiman D.I. Kim J. Lawrence M.S. Lin P. Meier S. Noble M.S. Saksena G. Voet D. Zhang H. Bernard B. Chambwe N. Dhankani V. Knijnenburg T. Kramer R. Leinonen K. Liu Y. Miller M. Reynolds S. Shmulevich I. Thorsson V. Zhang W. Akbani R. Broom B.M. Hegde A.M. Ju Z. Kanchi R.S. Korkut A. Li J. Liang H. Ling S. Liu W. Lu Y. Mills G.B. Ng K-S. Rao A. Ryan M. Wang J. Weinstein J.N. Zhang J. Abeshouse A. Armenia J. Chakravarty D. Chatila W.K. de Bruijn I. Gao J. Gross B.E. Heins Z.J. Kundra R. La K. Ladanyi M. Luna A. Nissan M.G. Ochoa A. Phillips S.M. Reznik E. Sanchez-Vega F. Sander C. Schultz N. Sheridan R. Sumer S.O. Sun Y. Taylor B.S. Wang J. Zhang H. Anur P. Peto M. Spellman P. Benz C. Stuart J.M. Wong C.K. Yau C. Hayes D.N. Parker J.S. Wilkerson M.D. Ally A. Balasundaram M. Bowlby R. Brooks D. Carlsen R. Chuah E. Dhalla N. Holt R. Jones S.J.M. Kasaian K. Lee D. Ma Y. Marra M.A. Mayo M. Moore R.A. Mungall A.J. Mungall K. Robertson A.G. Sadeghi S. Schein J.E. Sipahimalani P. Tam A. Thiessen N. Tse K. Wong T. Berger A.C. Beroukhim R. Cherniack A.D. Cibulskis C. Gabriel S.B. Gao G.F. Ha G. Meyerson M. Schumacher S.E. Shih J. Kucherlapati M.H. Kucherlapati R.S. Baylin S. Cope L. Danilova L. Bootwalla M.S. Lai P.H. Maglinte D.T. Van Den Berg D.J. Weisenberger D.J. Auman J.T. Balu S. Bodenheimer T. Fan C. Hoadley K.A. Hoyle A.P. Jefferys S.R. Jones C.D. Meng S. Mieczkowski P.A. Mose L.E. Perou A.H. Perou C.M. Roach J. Shi Y. Simons J.V. Skelly T. Soloway M.G. Tan D. Veluvolu U. Fan H. Hinoue T. Laird P.W. Shen H. Zhou W. Bellair M. Chang K. Covington K. Creighton C.J. Dinh H. Doddapaneni H.V. Donehower L.A. Drummond J. Gibbs R.A. Glenn R. Hale W. Han Y. Hu J. Korchina V. Lee S. Lewis L. Li W. Liu X. Morgan M. Morton D. Muzny D. Santibanez J. Sheth M. Shinbrot E. Wang L. Wang M. Wheeler D.A. Xi L. Zhao F. Hess J. Appelbaum E.L. Bailey M. Cordes M.G. Ding L. Fronick C.C. Fulton L.A. Fulton R.S. Kandoth C. Mardis E.R. McLellan M.D. Miller C.A. Schmidt H.K. Wilson R.K. Crain D. Curley E. Gardner J. Lau K. Mallery D. Morris S. Paulauskis J. Penny R. Shelton C. Shelton T. Sherman M. Thompson E. Yena P. Bowen J. Gastier-Foster J.M. Gerken M. Leraas K.M. Lichtenberg T.M. Ramirez N.C. Wise L. Zmuda E. Corcoran N. Costello T. Hovens C. Carvalho A.L. de Carvalho A.C. Fregnani J.H. Longatto-Filho A. Reis R.M. Scapulatempo-Neto C. Silveira H.C.S. Vidal D.O. Burnette A. Eschbacher J. Hermes B. Noss A. Singh R. Anderson M.L. Castro P.D. Ittmann M. Huntsman D. Kohl B. Le X. Thorp R. Andry C. Duffy E.R. Lyadov V. Paklina O. Setdikova G. Shabunin A. Tavobilov M. McPherson C. Warnick R. Berkowitz R. Cramer D. Feltmate C. Horowitz N. Kibel A. Muto M. Raut C.P. Malykh A. Barnholtz-Sloan J.S. Barrett W. Devine K. Fulop J. Ostrom Q.T. Shimmel K. Wolinsky Y. Sloan A.E. De Rose A. Giuliante F. Goodman M. Karlan B.Y. Hagedorn C.H. Eckman J. Harr J. Myers J. Tucker K. Zach L.A. Deyarmin B. Hu H. Kvecher L. Larson C. Mural R.J. Somiari S. Vicha A. Zelinka T. Bennett J. Iacocca M. Rabeno B. Swanson P. Latour M. Lacombe L. Têtu B. Bergeron A. McGraw M. Staugaitis S.M. Chabot J. Hibshoosh H. Sepulveda A. Su T. Wang T. Potapova O. Voronina O. Desjardins L. Mariani O. Roman-Roman S. Sastre X. Stern M-H. Cheng F. Signoretti S. Berchuck A. Bigner D. Lipp E. Marks J. McCall S. McLendon R. Secord A. Sharp A. Behera M. Brat D.J. Chen A. Delman K. Force S. Khuri F. Magliocca K. Maithel S. Olson J.J. Owonikoko T. Pickens A. Ramalingam S. Shin D.M. Sica G. Van Meir E.G. Zhang H. Eijckenboom W. Gillis A. Korpershoek E. Looijenga L. Oosterhuis W. Stoop H. van Kessel K.E. Zwarthoff E.C. Calatozzolo C. Cuppini L. Cuzzubbo S. DiMeco F. Finocchiaro G. Mattei L. Perin A. Pollo B. Chen C. Houck J. Lohavanichbutr P. Hartmann A. Stoehr C. Stoehr R. Taubert H. Wach S. Wullich B. Kycler W. Murawa D. Wiznerowicz M. Chung K. Edenfield W.J. Martin J. Baudin E. Bubley G. Bueno R. De Rienzo A. Richards W.G. Kalkanis S. Mikkelsen T. Noushmehr H. Scarpace L. Girard N. Aymerich M. Campo E. Giné E. Guillermo A.L. Van Bang N. Hanh P.T. Phu B.D. Tang Y. Colman H. Evason K. Dottino P.R. Martignetti J.A. Gabra H. Juhl H. Akeredolu T. Stepa S. Hoon D. Ahn K. Kang K.J. Beuschlein F. Breggia A. Birrer M. Bell D. Borad M. Bryce A.H. Castle E. Chandan V. Cheville J. Copland J.A. Farnell M. Flotte T. Giama N. Ho T. Kendrick M. Kocher J-P. Kopp K. Moser C. Nagorney D. O’Brien D. O’Neill B.P. Patel T. Petersen G. Que F. Rivera M. Roberts L. Smallridge R. Smyrk T. Stanton M. Thompson R.H. Torbenson M. Yang J.D. Zhang L. Brimo F. Ajani J.A. Gonzalez A.M.A. Behrens C. Bondaruk J. Broaddus R. Czerniak B. Esmaeli B. Fujimoto J. Gershenwald J. Guo C. Lazar A.J. Logothetis C. Meric-Bernstam F. Moran C. Ramondetta L. Rice D. Sood A. Tamboli P. Thompson T. Troncoso P. Tsao A. Wistuba I. Carter C. Haydu L. Hersey P. Jakrot V. Kakavand H. Kefford R. Lee K. Long G. Mann G. Quinn M. Saw R. Scolyer R. Shannon K. Spillane A. Stretch Synott M. Thompson J. Wilmott J. Al-Ahmadie H. Chan T.A. Ghossein R. Gopalan A. Levine D.A. Reuter V. Singer S. Singh B. Tien N.V. Broudy T. Mirsaidi C. Nair P. Drwiega P. Miller J. Smith J. Zaren H. Park J-W. Hung N.P. Kebebew E. Linehan W.M. Metwalli A.R. Pacak K. Pinto P.A. Schiffman M. Schmidt L.S. Vocke C.D. Wentzensen N. Worrell R. Yang H. Moncrieff M. Goparaju C. Melamed J. Pass H. Botnariuc N. Caraman I. Cernat M. Chemencedji I. Clipca A. Doruc S. Gorincioi G. Mura S. Pirtac M. Stancul I. Tcaciuc D. Albert M. Alexopoulou I. Arnaout A. Bartlett J. Engel J. Gilbert S. Parfitt J. Sekhon H. Thomas G. Rassl D.M. Rintoul R.C. Bifulco C. Tamakawa R. Urba W. Hayward N. Timmers H. Antenucci A. Facciolo F. Grazi G. Marino M. Merola R. de Krijger R. Gimenez-Roqueplo A-P. Piché A. Chevalier S. McKercher G. Birsoy K. Barnett G. Brewer C. Farver C. Naska T. Pennell N.A. Raymond D. Schilero C. Smolenski K. Williams F. Morrison C. Borgia J.A. Liptay M.J. Pool M. Seder C.W. Junker K. Omberg L. Dinkin M. Manikhas G. Alvaro D. Bragazzi M.C. Cardinale V. Carpino G. Gaudio E. Chesla D. Cottingham S. Dubina M. Moiseenko F. Dhanasekaran R. Becker K-F. Janssen K-P. Slotta-Huspenina J. Abdel-Rahman M.H. Aziz D. Bell S. Cebulla C.M. Davis A. Duell R. Elder J.B. Hilty J. Kumar B. Lang J. Lehman N.L. Mandt R. Nguyen P. Pilarski R. Rai K. Schoenfield L. Senecal K. Wakely P. Hansen P. Lechan R. Powers J. Tischler A. Grizzle W.E. Sexton K.C. Kastl A. Henderson J. Porten S. Waldmann J. Fassnacht M. Asa S.L. Schadendorf D. Couce M. Graefen M. Huland H. Sauter G. Schlomm T. Simon R. Tennstedt P. Olabode O. Nelson M. Bathe O. Carroll P.R. Chan J.M. Disaia P. Glenn P. Kelley R.K. Landen C.N. Phillips J. Prados M. Simko J. Smith-McCune K. VandenBerg S. Roggin K. Fehrenbach A. Kendler A. Sifri S. Steele R. Jimeno A. Carey F. Forgie I. Mannelli M. Carney M. Hernandez B. Campos B. Herold-Mende C. Jungk C. Unterberg A. von Deimling A. Bossler A. Galbraith J. Jacobus L. Knudson M. Knutson T. Ma D. Milhem M. Sigmund R. Godwin A.K. Madan R. Rosenthal H.G. Adebamowo C. Adebamowo S.N. Boussioutas A. Beer D. Giordano T. Mes-Masson A-M. Saad F. Bocklage T. Landrum L. Mannel R. Moore K. Moxley K. Postier R. Walker J. Zuna R. Feldman M. Valdivieso F. Dhir R. Luketich J. Pinero E.M.M. Quintero-Aguilo M. Carlotti C.G. Jr Dos Santos J.S. Kemp R. Sankarankuty A. Tirapelli D. Catto J. Agnew K. Swisher E. Creaney J. Robinson B. Shelley C.S. Godwin E.M. Kendall S. Shipman C. Bradford C. Carey T. Haddad A. Moyer J. Peterson L. Prince M. Rozek L. Wolf G. Bowman R. Fong K.M. Yang I. Korst R. Rathmell W.K. Fantacone-Campbell J.L. Hooke J.A. Kovatich A.J. Shriver C.D. DiPersio J. Drake B. Govindan R. Heath S. Ley T. Van Tine B. Westervelt P. Rubin M.A. Lee J.I. Aredes N.D. Mariamidze A. The immune landscape of cancer. Immunity 2018 48 4 812 830.e14 10.1016/j.immuni.2018.03.023 29628290
    [Google Scholar]
  37. Maeser D. Gruener R.F. Huang R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  38. Singal A.G. Nehra M. Adams-Huet B. Yopp A.C. Tiro J.A. Marrero J.A. Lok A.S. Lee W.M. Detection of hepatocellular carcinoma at advanced stages among patients in the HALT-C trial: Where did surveillance fail? Am. J. Gastroenterol. 2013 108 3 425 432 10.1038/ajg.2012.449 23337478
    [Google Scholar]
  39. Wei S. Xing J. Chen J. Chen L. Lv J. Chen X. Li T. Yu T. Wang H. Wang K. Yu W. DCAF13 inhibits the p53 signaling pathway by promoting p53 ubiquitination modification in lung adenocarcinoma. J Exp Clin Cancer Res. 2024 43 1 3
    [Google Scholar]
  40. Wei S. Lu K. Xing J. Yu W. A multidimensional pan-cancer analysis of DCAF13 and its protumorigenic effect in lung adenocarcinoma. FASEB J. 2023 37 4 e22849 10.1096/fj.202201022RRR 36884358
    [Google Scholar]
  41. Hassan M.K. Kumar D. Naik M. Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 2018 13 1 e0191377 10.1371/journal.pone.0191377 29342219
    [Google Scholar]
  42. Han R. Feng P. Pang J. Zou D. Li X. Geng C. Li L. Min J. Shi J. A novel HCC prognosis predictor EEF1E1 is related to immune infiltration and may be involved in EEF1E1/ATM/p53 signaling. Front. Oncol. 2021 11 700972 10.3389/fonc.2021.700972 34282404
    [Google Scholar]
  43. Yin L. He N. Chen C. Zhang N. Lin Y. Xia Q. Identification of novel blood-based HCC-specific diagnostic biomarkers for human hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1908 1916 10.1080/21691401.2019.1613421 31072138
    [Google Scholar]
  44. Guo H. Lu F. Lu R. Huang M. Li X. Yuan J. Wang F. A novel tumor 4-driver gene signature for the prognosis of hepatocellular carcinoma. Heliyon 2023 9 6 e17054 10.1016/j.heliyon.2023.e17054 37484410
    [Google Scholar]
  45. Huang S. Zhang C. Sun C. Hou Y. Zhang Y. Tam N.L. Wang Z. Yu J. Huang B. Zhuang H. Zhou Z. Ma Z. Sun Z. He X. Zhou Q. Hou B. Wu L. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging 2020 12 3 3025 3041 10.18632/aging.102797 32045367
    [Google Scholar]
  46. Xu Q. Kong N. Zhao Y. Wu Q. Wang X. Xun X. Gao P. Pan-cancer analyses reveal oncogenic and immunological role of PLOD2. Front. Genet. 2022 13 864655 10.3389/fgene.2022.864655 35586565
    [Google Scholar]
  47. Noda T. Yamamoto H. Takemasa I. Yamada D. Uemura M. Wada H. Kobayashi S. Marubashi S. Eguchi H. Tanemura M. Umeshita K. Doki Y. Mori M. Nagano H. PLOD2 induced under hypoxia is a novel prognostic factor for hepatocellular carcinoma after curative resection. Liver Int 2012 32 1 110 118
    [Google Scholar]
  48. YuFeng Z. Ming Q. Expression and prognostic roles of PABPC1 in hepatocellular carcinoma. Int. J. Surg. 2020 84 3 12 10.1016/j.ijsu.2020.10.004 33080414
    [Google Scholar]
  49. Lin M. Hu L. Shen S. Liu J. Liu Y. Xu Y. Chen H. Sugimoto K. Li J. Kamitsukasa I. Hiwasa T. Wang H. Xu A. Atherosclerosis-related biomarker PABPC1 predicts pan-cancer events. Stroke Vasc. Neurol. 2024 9 2 108 125 10.1136/svn‑2022‑002246 37311641
    [Google Scholar]
  50. Yang Z. Li J. Song H. Mei Z. Jia X. Tian X. Yan C. Han Y. Unraveling the molecular links between benzopyrene exposure, NASH, and HCC: An integrated bioinformatics and experimental study. Sci. Rep. 2023 13 1 20520 10.1038/s41598‑023‑46440‑1 37993485
    [Google Scholar]
  51. Zhang Q. Xiong L. Wei T. Liu Q. Yan L. Chen J. Dai L. Shi L. Zhang W. Yang J. Roessler S. Liu L. Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma. Oncogene 2023 42 19 1509 1523 10.1038/s41388‑023‑02665‑y 36932115
    [Google Scholar]
  52. Wang L. Yan K. He X. Zhu H. Song J. Chen S. Cai S. Zhao Y. Wang L. LRP1B or TP53 mutations are associated with higher tumor mutational burden and worse survival in hepatocellular carcinoma. J. Cancer 2021 12 1 217 223 10.7150/jca.48983 33391418
    [Google Scholar]
  53. Liu H.J. Du H. Khabibullin D. Zarei M. Wei K. Freeman G.J. Kwiatkowski D.J. Henske E.P. mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nat. Commun. 2023 14 1 1214 10.1038/s41467‑023‑36881‑7 36869048
    [Google Scholar]
  54. Kontos F. Michelakos T. Kurokawa T. Sadagopan A. Schwab J.H. Ferrone C.R. Ferrone S. B7-H3: An attractive target for antibody-based immunotherapy. Clin. Cancer Res. 2021 27 5 1227 1235 10.1158/1078‑0432.CCR‑20‑2584 33051306
    [Google Scholar]
  55. van Duijn A. Van der Burg S.H. Scheeren F.A. CD47/SIRPα axis: Bridging innate and adaptive immunity. J. Immunother. Cancer 2022 10 7 e004589 10.1136/jitc‑2022‑004589 35831032
    [Google Scholar]
  56. Lasser S.A. Ozbay Kurt F.G. Arkhypov I. Utikal J. Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat. Rev. Clin. Oncol. 2024 21 2 147 164 10.1038/s41571‑023‑00846‑y 38191922
    [Google Scholar]
  57. Tang W. Chen Z. Zhang W. Cheng Y. Zhang B. Wu F. Wang Q. Wang S. Rong D. Reiter F.P. De Toni E.N. Wang X. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct. Target. Ther. 2020 5 1 87 10.1038/s41392‑020‑0187‑x 32532960
    [Google Scholar]
  58. Chen J. Jia X. Li Z. Song W. Jin C. Zhou M. Xie H. Zheng S. Song P. Targeting WEE1 by adavosertib inhibits the malignant phenotypes of hepatocellular carcinoma. Biochem. Pharmacol. 2021 188 114494 10.1016/j.bcp.2021.114494 33684390
    [Google Scholar]
  59. Wang Y. Li H. Liang Q. Liu B. Mei X. Ma Y. Combinatorial immunotherapy of sorafenib and blockade of programmed death-ligand 1 induces effective natural killer cell responses against hepatocellular carcinoma. Tumour Biol. 2015 36 3 1561 1566 10.1007/s13277‑014‑2722‑2 25371070
    [Google Scholar]
  60. Rimassa L. Finn R.S. Sangro B. Combination immunotherapy for hepatocellular carcinoma. J. Hepatol. 2023 79 2 506 515 10.1016/j.jhep.2023.03.003 36933770
    [Google Scholar]
  61. Wang S. Wang R. Hu D. Zhang C. Cao P. Huang J. Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy. npj Precis. Onc. 2024 8 1 49 10.1038/s41698‑024‑00538‑5
    [Google Scholar]
  62. Sun Y. Wu P. Zhang Z. Wang Z. Zhou K. Song M. Ji Y. Zang F. Lou L. Rao K. Wang P. Gu Y. Gu J. Lu B. Chen L. Pan X. Zhao X. Peng L. Liu D. Chen X. Wu K. Lin P. Wu L. Su Y. Du M. Hou Y. Yang X. Qiu S. Shi Y. Sun H. Zhou J. Huang X. Peng D.H. Zhang L. Fan J. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma. Cancer Cell 2024 42 1 135 156.e17 10.1016/j.ccell.2023.11.010 38101410
    [Google Scholar]
  63. Wu X. Li W. Tu H. Big data and artificial intelligence in cancer research. Trends Cancer 2024 10 2 147 160 10.1016/j.trecan.2023.10.006 37977902
    [Google Scholar]
  64. Park J. Lee Y.T. Agopian V.G. Liu J.S. Koltsova E.K. You S. Zhu Y. Tseng H.R. Yang J.D. Liquid biopsy in hepatocellular carcinoma: Challenges, advances, and clinical implications. Clin. Mol. Hepatol. 2024 10.3350/cmh.2024.0541 39604328
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673359092250304031435
Loading
/content/journals/cmc/10.2174/0109298673359092250304031435
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test