Skip to content
2000
image of Immunogenic Cell Death-relevant Molecular Patterns, Prognostic Genes, and Implications for Immunotherapy in Ovarian Cancer

Abstract

Background

Ovarian cancer (OV) is one of the deadliest gynecologic cancers, and approximately 75% of serous ovarian cancer (SOC) patients are diagnosed at advanced stages due to the lack of effective biomarkers.

Objective

Immunogenic cell death (ICD) has been investigated in many comprehensive studies, and the role of ICD in ovarian cancer and its impact on immunotherapy is not yet known.

Methods

The NMF clustering analysis was employed to categorize OV samples into different subgroups. Survival, mutation, and CNV analyses were performed in these clusters. ESTIMATE, CIBERSORT, TIDE, and drug sensitivity analyses (based on GDSC) were also performed on the subtypes. Then, differentially expressed immunogenic cell death genes (DE-ICDGs) in OV were obtained by crossing the DEGs between cluster3 cluster1, DEGs from the TCGA-GTEx dataset, and DEGs from the GSE40595 dataset. Functional enrichment analysis of DE-ICDGs was then performed. The signature genes related to the prognosis of OV in three OV datasets were excavated by drawing Kaplan-Meier curves. Finally, quantitative real-time PCR (qRT-PCR) was performed to verify the expression trends of the signature genes.

Results

The NMF clustering analysis categorized OV samples into three distinct groups according to the expression levels of ICDGs, with differential analysis indicating that Cluster3 represented the subgroup with high ICD expression. Mutation and CNV analysis did not differ significantly between clusters, but Amp and Del's numbers did. Immuno-infiltration analysis revealed that cluster3 showed significant differences from cluster1 and cluster2. Immunotherapy and drug sensitivity analysis showed differences in immunotherapy and chemotherapy sensitivity between the clusters. The DEGs in cluster3 cluster1, TCGA-GTEx dataset and GSE40595 dataset were intersected to obtain a total of 71 DE-ICDGs, and functional enrichment result suggested that the DE-ICDGs were significantly correlated with inflammatory response, complement system and positive regulation of cytokine production. 2 DE-ICDGs (FN1 and LUM) were identified that were associated with OV prognosis and were validated significantly down-regulated in the SOC group with PCR.

Conclusion

We identified ICD-associated subtypes of OV and mined 2 OV prognostic genes (FN1 and LUM) associated with ICD, which may have important implications for OV prognosis and therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354860250220065131
2025-04-03
2025-05-29
Loading full text...

Full text loading...

References

  1. Lheureux S. Braunstein M. Oza A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019 69 4 280 304 10.3322/caac.21559 31099893
    [Google Scholar]
  2. Menon U. Karpinskyj C. Gentry-Maharaj A. Ovarian cancer prevention and screening. Obstet. Gynecol. 2018 131 5 909 927 10.1097/AOG.0000000000002580 29630008
    [Google Scholar]
  3. Jacobs I.J. Menon U. Ryan A. Gentry-Maharaj A. Burnell M. Kalsi J.K. Amso N.N. Apostolidou S. Benjamin E. Cruickshank D. Crump D.N. Davies S.K. Dawnay A. Dobbs S. Fletcher G. Ford J. Godfrey K. Gunu R. Habib M. Hallett R. Herod J. Jenkins H. Karpinskyj C. Leeson S. Lewis S.J. Liston W.R. Lopes A. Mould T. Murdoch J. Oram D. Rabideau D.J. Reynolds K. Scott I. Seif M.W. Sharma A. Singh N. Taylor J. Warburton F. Widschwendter M. Williamson K. Woolas R. Fallowfield L. McGuire A.J. Campbell S. Parmar M. Skates S.J. Ovarian cancer screening and mortality in the UK collaborative trial of ovarian cancer screening (UKCTOCS): A randomised controlled trial. Lancet 2016 387 10022 945 956 10.1016/S0140‑6736(15)01224‑6 26707054
    [Google Scholar]
  4. Galluzzi L. Buqué A. Kepp O. Zitvogel L. Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017 17 2 97 111 10.1038/nri.2016.107 27748397
    [Google Scholar]
  5. Galluzzi L. Vitale I. Warren S. Adjemian S. Agostinis P. Martinez A.B. Chan T.A. Coukos G. Demaria S. Deutsch E. Draganov D. Edelson R.L. Formenti S.C. Fucikova J. Gabriele L. Gaipl U.S. Gameiro S.R. Garg A.D. Golden E. Han J. Harrington K.J. Hemminki A. Hodge J.W. Hossain D.M.S. Illidge T. Karin M. Kaufman H.L. Kepp O. Kroemer G. Lasarte J.J. Loi S. Lotze M.T. Manic G. Merghoub T. Melcher A.A. Mossman K.L. Prosper F. Rekdal Ø. Rescigno M. Riganti C. Sistigu A. Smyth M.J. Spisek R. Stagg J. Strauss B.E. Tang D. Tatsuno K. van Gool S.W. Vandenabeele P. Yamazaki T. Zamarin D. Zitvogel L. Cesano A. Marincola F.M. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020 8 1 e000337 10.1136/jitc‑2019‑000337 32209603
    [Google Scholar]
  6. Garg A.D. Nowis D. Golab J. Vandenabeele P. Krysko D.V. Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim. Biophys. Acta 2010 1805 1 53 71 19720113
    [Google Scholar]
  7. Chen Z. Liu L. Liang R. Luo Z. He H. Wu Z. Tian H. Zheng M. Ma Y. Cai L. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano 2018 12 8 8633 8645 10.1021/acsnano.8b04371 30005164
    [Google Scholar]
  8. Asaoka Y. Ijichi H. Koike K. PD-1 Blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015 373 20 1979 10.1056/NEJMc1510353 26559583
    [Google Scholar]
  9. Jin M.Z. Wang X.P. Immunogenic cell death-based cancer vaccines. Front. Immunol. 2021 12 697964 10.3389/fimmu.2021.697964 34135914
    [Google Scholar]
  10. Galluzzi L. Humeau J. Buqué A. Zitvogel L. Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020 17 12 725 741 10.1038/s41571‑020‑0413‑z 32760014
    [Google Scholar]
  11. Ye W. Gunti S. Allen C.T. Hong Y. Clavijo P.E. Van Waes C. Schmitt N.C. ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer. Onco. Immunology 2020 9 1 1710398 10.1080/2162402X.2019.1710398 32002309
    [Google Scholar]
  12. Fucikova J. Moserova I. Urbanova L. Bezu L. Kepp O. Cremer I. Salek C. Strnad P. Kroemer G. Galluzzi L. Spisek R. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front. Immunol. 2015 6 402 10.3389/fimmu.2015.00402 26300886
    [Google Scholar]
  13. Lau T.S. Chan L.K.Y. Man G.C.W. Wong C.H. Lee J.H.S. Yim S.F. Cheung T.H. McNeish I.A. Kwong J. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol. Res. 2020 8 8 1099 1111 10.1158/2326‑6066.CIR‑19‑0616 32354736
    [Google Scholar]
  14. Miyamoto S. Inoue H. Nakamura T. Yamada M. Sakamoto C. Urata Y. Okazaki T. Marumoto T. Takahashi A. Takayama K. Nakanishi Y. Shimizu H. Tani K. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 2012 72 10 2609 2621 10.1158/0008‑5472.CAN‑11‑3185 22461509
    [Google Scholar]
  15. Chang C.L. Hsu Y.T. Wu C.C. Yang Y.C. Wang C. Wu T.C. Hung C.F. Immune mechanism of the anti-tumor effects generated by bortezomib. J. Immunol. 2012 189 6 3209 3220 10.4049/jimmunol.1103826 22896634
    [Google Scholar]
  16. Bugaut H. Bruchard M. Berger H. Derangère V. Odoul L. Euvrard R. Ladoire S. Chalmin F. Végran F. Rébé C. Apetoh L. Ghiringhelli F. Mignot G. Bleomycin exerts ambivalent anti-tumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 2013 8 6 e65181 10.1371/journal.pone.0065181 23762310
    [Google Scholar]
  17. Schiavoni G. Sistigu A. Valentini M. Mattei F. Sestili P. Spadaro F. Sanchez M. Lorenzi S. D’Urso M.T. Belardelli F. Gabriele L. Proietti E. Bracci L. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 2011 71 3 768 778 10.1158/0008‑5472.CAN‑10‑2788 21156650
    [Google Scholar]
  18. Chen H.M. Wang P.H. Chen S.S. Wen C.C. Chen Y.H. Yang W.C. Yang N.S. Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol. Immunother. 2012 61 11 1989 2002 10.1007/s00262‑012‑1258‑9 22527248
    [Google Scholar]
  19. Wang Y. Li X. Huang Y. Gang Q. Liu M. Zhang H. Shen S. Qi Y. Zhang J. The prognostic value and potential immune mechanisms of lncrnas related to immunogenic cell death in papillary thyroid carcinoma. J. Inflamm. Res. 2024 17 1995 2008 10.2147/JIR.S456452 38566983
    [Google Scholar]
  20. Xu M. Lu J. Zhong Y. Jiang J. Shen Y. Su J. Lin S. Immunogenic cell death-relevant damage-associated molecular patterns and sensing receptors in triple-negative breast cancer molecular subtypes and implications for immunotherapy. Front. Oncol. 2022 12 870914 10.3389/fonc.2022.870914 35444934
    [Google Scholar]
  21. Wang X. Wu S. Liu F. Ke D. Wang X. Pan D. Xu W. Zhou L. He W. An immunogenic cell death-related classification predicts prognosis and response to immunotherapy in head and neck squamous cell carcinoma. Front. Immunol. 2021 12 781466 10.3389/fimmu.2021.781466 34868055
    [Google Scholar]
  22. Garg A.D. De Ruysscher D. Agostinis P. Immunological metagene signatures derived from immunogenic cancer cell death associate with improved survival of patients with lung, breast or ovarian malignancies: A large-scale meta-analysis. Onco Immunology 2016 5 2 e1069938 10.1080/2162402X.2015.1069938 27057433
    [Google Scholar]
  23. Quintero A. Hübschmann D. Kurzawa N. Steinhauser S. Rentzsch P. Krämer S. Andresen C. Park J. Eils R. Schlesner M. Herrmann C. ShinyButchR: Interactive NMF-based decomposition workflow of genome-scale datasets. Biol. Methods Protoc. 2020 5 1 bpaa022 10.1093/biomethods/bpaa022 33376806
    [Google Scholar]
  24. George B. Seals S. Aban I. Survival analysis and regression models. J. Nucl. Cardiol. 2014 21 4 686 694 10.1007/s12350‑014‑9908‑2 24810431
    [Google Scholar]
  25. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  26. Mayakonda A. Lin D.C. Assenov Y. Plass C. Koeffler H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018 28 11 1747 1756 10.1101/gr.239244.118 30341162
    [Google Scholar]
  27. Ren N. Liang B. Li Y. Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci. Rep. 2020 40 10 BSR20200980 10.1042/BSR20200980 33015704
    [Google Scholar]
  28. Chen B. Khodadoust M.S. Liu C.L. Newman A.M. Alizadeh A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 2018 1711 243 259 10.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  29. Cong S. Guo Q. Cheng Y. He Y. Zhao X. Kong C. Ning S. Zhang G. Immune characterization of ovarian cancer reveals new cell subtypes with different prognoses, immune risks, and molecular mechanisms. Front. Cell Dev. Biol. 2020 8 614139 10.3389/fcell.2020.614139 33409283
    [Google Scholar]
  30. Geeleher P. Cox N. Huang R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 2014 9 9 e107468 10.1371/journal.pone.0107468 25229481
    [Google Scholar]
  31. Ivanova T.I. Klabukov I.D. Krikunova L.I. Poluektova M.V. Sychenkova N.I. Khorokhorina V.A. Vorobyev N.V. Gaas M.Y. Baranovskii D.S. Goryainova O.S. Sachko A.M. Shegay P.V. Kaprin A.D. Tillib S.V. Prognostic value of serum transferrin analysis in patients with ovarian cancer and cancer-related functional iron deficiency: A retrospective case–control study. J. Clin. Med. 2022 11 24 7377 10.3390/jcm11247377 36555993
    [Google Scholar]
  32. Huang Y. Huang J. Huang Y. Gan L. Long L. Pu A. Xie R. TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via up-regulation of AXIN2 expression. Am. J. Cancer Res. 2020 10 1 131 147 32064157
    [Google Scholar]
  33. Muth C. Rubner Y. Semrau S. Rühle P.F. Frey B. Strnad A. Buslei R. Fietkau R. Gaipl U.S. Primary glioblastoma multiforme tumors and recurrence. Strahlenther. Onkol. 2016 192 3 146 155 10.1007/s00066‑015‑0926‑z 26646311
    [Google Scholar]
  34. Fucikova J. Becht E. Iribarren K. Goc J. Remark R. Damotte D. Alifano M. Devi P. Biton J. Germain C. Lupo A. Fridman W.H. Dieu-Nosjean M.C. Kroemer G. Sautès-Fridman C. Cremer I. Calreticulin expression in human non–small cell lung cancers correlates with increased accumulation of anti-tumor immune cells and favorable prognosis. Cancer Res. 2016 76 7 1746 1756 10.1158/0008‑5472.CAN‑15‑1142 26842877
    [Google Scholar]
  35. Luchtel R.A. Dasari S. Oishi N. Pedersen M.B. Hu G. Rech K.L. Ketterling R.P. Sidhu J. Wang X. Katoh R. Dogan A. Kip N.S. Cunningham J.M. Sun Z. Baheti S. Porcher J.C. Said J.W. Jiang L. Hamilton- Dutoit S.J. Møller M.B. Nørgaard P. Bennani N.N. Chng W.J. Huang G. Link B.K. Facchetti F. Cerhan J.R. d’Amore F. Ansell S.M. Feldman A.L. Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 2018 132 13 1386 1398 10.1182/blood‑2018‑03‑838524 30093402
    [Google Scholar]
  36. Webb P.M. Jordan S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2017 41 3 14 10.1016/j.bpobgyn.2016.08.006 27743768
    [Google Scholar]
  37. Kepp O. Menger L. Vacchelli E. Locher C. Adjemian S. Yamazaki T. Martins I. Sukkurwala A.Q. Michaud M. Senovilla L. Galluzzi L. Kroemer G. Zitvogel L. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013 24 4 311 318 10.1016/j.cytogfr.2013.05.001 23787159
    [Google Scholar]
  38. Duan X. Chan C. Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed. 2019 58 3 670 680 10.1002/anie.201804882 30016571
    [Google Scholar]
  39. Li Y. Zhang H. Li Q. Zou P. Huang X. Wu C. Tan L. CDK12/13 inhibition induces immunogenic cell death and enhances anti-PD-1 anticancer activity in breast cancer. Cancer Lett. 2020 495 12 21 10.1016/j.canlet.2020.09.011 32941949
    [Google Scholar]
  40. Yang W. Zhang F. Deng H. Lin L. Wang S. Kang F. Yu G. Lau J. Tian R. Zhang M. Wang Z. He L. Ma Y. Niu G. Hu S. Chen X. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano 2020 14 1 620 631 10.1021/acsnano.9b07212 31877023
    [Google Scholar]
  41. Zamarin D. Jazaeri A.A. Leveraging immunotherapy for the treatment of gynecologic cancers in the era of precision medicine. Gynecol. Oncol. 2016 141 1 86 94 10.1016/j.ygyno.2015.12.030 27016233
    [Google Scholar]
  42. Pawłowska A. Skiba W. Suszczyk D. Kuryło W. Jakubowicz-Gil J. Paduch R. Wertel I. The dual blockade of the TIGIT and PD-1/PD-L1 pathway as a new hope for ovarian cancer patients. Cancers 2022 14 23 5757 10.3390/cancers14235757 36497240
    [Google Scholar]
  43. Anderson K. Su Y. Burnett M. Bates B. Suarez M.R. Ruskin S. Greenberg P. Gottardo R. Voillet V. Vakil A. 561 Triple checkpoint blockade, but not anti-PD1 alone, enhances the efficacy of engineered adoptive T cell therapy in advanced ovarian cancer. J Immunother Cancer. 2021 9 2 A590 10.1136/jitc‑2021‑SITC2021.561
    [Google Scholar]
  44. Zhou F. Feng B. Yu H. Wang D. Wang T. Ma Y. Wang S. Li Y. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 2019 31 14 1805888 10.1002/adma.201805888 30762908
    [Google Scholar]
  45. Tu K. Deng H. Kong L. Wang Y. Yang T. Hu Q. Hu M. Yang C. Zhang Z. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl. Mater. Interfaces 2020 12 14 16018 16030 10.1021/acsami.9b23084 32192326
    [Google Scholar]
  46. Casares N. Pequignot M.O. Tesniere A. Ghiringhelli F. Roux S. Chaput N. Schmitt E. Hamai A. Hervas-Stubbs S. Obeid M. Coutant F. Métivier D. Pichard E. Aucouturier P. Pierron G. Garrido C. Zitvogel L. Kroemer G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005 202 12 1691 1701 10.1084/jem.20050915 16365148
    [Google Scholar]
  47. Obeid M. Tesniere A. Ghiringhelli F. Fimia G.M. Apetoh L. Perfettini J.L. Castedo M. Mignot G. Panaretakis T. Casares N. Métivier D. Larochette N. van Endert P. Ciccosanti F. Piacentini M. Zitvogel L. Kroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007 13 1 54 61 10.1038/nm1523 17187072
    [Google Scholar]
  48. Wang Q. Ju X. Wang J. Fan Y. Ren M. Zhang H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett. 2018 438 17 23 10.1016/j.canlet.2018.08.028 30217563
    [Google Scholar]
  49. Qin T. Xu X. Zhang Z. Li J. You X. Guo H. Sun H. Liu M. Dai Z. Zhu H. Paclitaxel/sunitinib-loaded micelles promote an anti-tumor response in vitro through synergistic immunogenic cell death for triple-negative breast cancer. Nanotechnology 2020 31 36 365101 10.1088/1361‑6528/ab94dc 32434167
    [Google Scholar]
  50. Yu Y. Huang Z. Chen Q. Zhang Z. Jiang H. Gu R. Ding Y. Hu Y. Iron-based nanoscale coordination polymers synergistically induce immunogenic ferroptosis by blocking dihydrofolate reductase for cancer immunotherapy. Biomaterials 2022 288 121724 10.1016/j.biomaterials.2022.121724 36038420
    [Google Scholar]
  51. Ritzenthaler J.D. Han S. Roman J. Stimulation of lung carcinoma cell growth by fibronectin–integrin signalling. Mol. Biosyst. 2008 4 12 1160 1169 10.1039/b800533h 19396378
    [Google Scholar]
  52. Liang H. Yu M. Yang R. Zhang L. Zhang L. Zhu D. Luo H. Hong Y. Yu T. Sun J. Shan H. Gu Y. A PTAL-miR-101-FN1 axis promotes EMT and iInvasion-metastasis in serous ovarian cancer. Mol. Ther. Oncolytics 2020 16 53 62 10.1016/j.omto.2019.12.002 31930166
    [Google Scholar]
  53. Chung S. Nakagawa H. Uemura M. Piao L. Ashikawa K. Hosono N. Takata R. Akamatsu S. Kawaguchi T. Morizono T. Tsunoda T. Daigo Y. Matsuda K. Kamatani N. Nakamura Y. Kubo M. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 2011 102 1 245 252 10.1111/j.1349‑7006.2010.01737.x 20874843
    [Google Scholar]
  54. Sen T. Dutta A. Maity G. Chatterjee A. Fibronectin induces matrix metalloproteinase-9 (MMP-9) in human laryngeal carcinoma cells by involving multiple signaling pathways. Biochimie 2010 92 10 1422 1434 10.1016/j.biochi.2010.07.005 20638438
    [Google Scholar]
  55. Blochberger T.C. Cornuet P.K. Hassell J.R. Isolation and partial characterization of lumican and decorin from adult chicken corneas. A keratan sulfate-containing isoform of decorin is developmentally regulated. J. Biol. Chem. 1992 267 29 20613 20619 10.1016/S0021‑9258(19)36731‑6 1400383
    [Google Scholar]
  56. Saika S. Miyamoto T. Tanaka S. Tanaka T. Ishida I. Ohnishi Y. Ooshima A. Ishiwata T. Asano G. Chikama T. Shiraishi A. Liu C.Y. Kao C.W.C. Kao W.W.Y. Response of lens epithelial cells to injury: Role of lumican in epithelial-mesenchymal transition. Invest. Ophthalmol. Vis. Sci. 2003 44 5 2094 2102 10.1167/iovs.02‑1059 12714648
    [Google Scholar]
  57. Nikitovic D. Berdiaki A. Zafiropoulos A. Katonis P. Tsatsakis A. Karamanos N.K. Tzanakakis G.N. Lumican expression is positively correlated with the differentiation and negatively with the growth of human osteosarcoma cells. FEBS J. 2008 275 2 350 361 10.1111/j.1742‑4658.2007.06205.x 18093185
    [Google Scholar]
  58. Troup S. Njue C. Kliewer E.V. Parisien M. Roskelley C. Chakravarti S. Roughley P.J. Murphy L.C. Watson P.H. Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin. Cancer Res. 2003 9 1 207 214 12538471
    [Google Scholar]
  59. Wu J. Liu Z. Shao C. Gong Y. Hernando E. Lee P. Narita M. Muller W. Liu J. Wei J.J. HMGA2 overexpression-induced ovarian surface epithelial transformation is mediated through regulation of EMT genes. Cancer Res. 2011 71 2 349 359 10.1158/0008‑5472.CAN‑10‑2550 21224353
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673354860250220065131
Loading
/content/journals/cmc/10.2174/0109298673354860250220065131
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test