Skip to content
2000
image of Recent Progress in Curcumin: Extraction, Purification, and Bioactivity

Abstract

Curcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity. We systematically describe the advantages and disadvantages of traditional and modern extraction technologies. The usual purification methods include conventional methods (such as macroporous resin column chromatography and silica gel column chromatography, ) and auxiliary modern technologies (such as high-speed countercurrent chromatography and supercritical fluid chromatography). In terms of biological activity, the phenolic hydroxy group and methoxy group of curcumin are closely related to its antioxidant activity, endowing it with strong antibacterial, anti-inflammatory, and antitumor properties. Moreover, the development direction based on its multiple biological activities is also discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673353286241219061902
2024-01-24
2025-04-14
Loading full text...

Full text loading...

References

  1. Goel A. Kunnumakkara A.B. Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008 75 4 787 809 10.1016/j.bcp.2007.08.016 17900536
    [Google Scholar]
  2. Jiang T. Ghosh R. Charcosset C. Extraction, purification and applications of curcumin from plant materials: A comprehensive review. Trends Food Sci. Technol. 2021 112 419 430 10.1016/j.tifs.2021.04.015
    [Google Scholar]
  3. Tan J. Han Y. Han B. Qi X. Cai X. Ge S. Xue H. Extraction and purification of anthocyanins: A review. J. Agricul. Food Res. 2022 8 100306 100313 10.1016/j.jafr.2022.100306
    [Google Scholar]
  4. Ali Z. Saleem M. Atta B.M. Khan S.S. Hammad G. Determination of curcuminoid content in turmeric using fluorescence spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 213 192 198 10.1016/j.saa.2019.01.028 30685558
    [Google Scholar]
  5. Luque de Castro M.D. Priego-Capote F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010 1217 16 2383 2389 10.1016/j.chroma.2009.11.027 19945707
    [Google Scholar]
  6. Ahsan R. Arshad M. Khushtar M. Ahmad M.A. Muazzam M. Akhter M.S. Gupta G. Muzahid M. A comprehensive review on physiological effects of curcumin. Drug Res. 2020 70 10 441 447 10.1055/a‑1207‑9469 32746480
    [Google Scholar]
  7. Manasa P.S.L. Kamble A.D. Chilakamarthi U. Various extraction techniques of curcumin: A comprehensive review. ACS Omega 2023 8 38 34868 34878 10.1021/acsomega.3c04205 37779951
    [Google Scholar]
  8. Horosanskaia E. Yuan L. Seidel-Morgenstern A. Lorenz H. Purification of curcumin from ternary extract-similar mixtures of curcuminoids in a single crystallization step. Crystals 2020 10 3 206 222 10.3390/cryst10030206
    [Google Scholar]
  9. Pan Y. Ju R. Cao X. Pei H. Zheng T. Wang W. Optimization extraction and purification of biological activity curcumin from Curcuma longa L by high-performance counter-current chromatography. J. Sep. Sci. 2020 43 8 1586 1592 10.1002/jssc.201901174 32027757
    [Google Scholar]
  10. Bhat A. Mahalakshmi A.M. Ray B. Tuladhar S. Hediyal T.A. Manthiannem E. Padamati J. Chandra R. Chidambaram S.B. Sakharkar M.K. Benefits of curcumin in brain disorders. Biofactors 2019 45 5 666 689 10.1002/biof.1533 31185140
    [Google Scholar]
  11. Giordano A. Tommonaro G. Curcumin and Cancer. Nutrients 2019 11 10 2376 2396 10.3390/nu11102376 31590362
    [Google Scholar]
  12. Patel S.S. Acharya A. Ray R.S. Agrawal R. Raghuwanshi R. Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 2020 60 6 887 939 10.1080/10408398.2018.1552244 30632782
    [Google Scholar]
  13. Vollono L. Falconi M. Gaziano R. Iacovelli F. Dika E. Terracciano C. Bianchi L. Campione E. Potential of curcumin in skin disorders. Nutrients 2019 11 9 2169 2194 10.3390/nu11092169 31509968
    [Google Scholar]
  14. Burge K. Gunasekaran A. Eckert J. Chaaban H. Curcumin and intestinal inflammatory diseases: Molecular mechanisms of protection. Int. J. Mol. Sci. 2019 20 8 1912 1948 10.3390/ijms20081912 31003422
    [Google Scholar]
  15. Wang Q. Ye C. Sun S. Li R. Shi X. Wang S. Zeng X. Kuang N. Liu Y. Shi Q. Liu R. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int. Immunopharmacol. 2019 72 292 300 10.1016/j.intimp.2019.04.027 31005039
    [Google Scholar]
  16. Chittasupho C. Manthaisong A. Okonogi S. Tadtong S. Samee W. Effects of quercetin and curcumin combination on antibacterial, antioxidant, in vitro wound healing and migration of human dermal fibroblast cells. Int. J. Mol. Sci. 2021 23 1 142 158 10.3390/ijms23010142 35008566
    [Google Scholar]
  17. Hussain Z. Thu H.E. Amjad M.W. Hussain F. Ahmed T.A. Khan S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater. Sci. Eng. C 2017 77 1316 1326 10.1016/j.msec.2017.03.226 28532009
    [Google Scholar]
  18. Rathore S. Mukim M. Sharma P. Devi S. Nagar J.C. Khalid M. Curcumin: A review for health benefits. Int. J. Res. Rev. 2020 7 1 273 290
    [Google Scholar]
  19. Mansouri K. Rasoulpoor S. Daneshkhah A. Abolfathi S. Salari N. Mohammadi M. Rasoulpoor S. Shabani S. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer 2020 20 1 791 10.1186/s12885‑020‑07256‑8 32838749
    [Google Scholar]
  20. Tomeh M.A. Hadianamrei R. Zhao X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019 20 5 1033 10.3390/ijms20051033 30818786
    [Google Scholar]
  21. Li L. Zhang X. Pi C. Yang H. Zheng X. Zhao L. Wei Y. Review of curcumin physicochemical targeting delivery system. Int. J. Nanomedicine 2020 15 9799 9821 10.2147/IJN.S276201 33324053
    [Google Scholar]
  22. Noorafshan A. Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr. Pharm. Des. 2013 19 11 2032 2046 23116311
    [Google Scholar]
  23. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  24. Pulido-Moran M. Moreno-Fernandez J. Ramirez-Tortosa C. Ramirez-Tortosa M.C. Curcumin and Health. Molecules 2016 21 3 264 10.3390/molecules21030264 26927041
    [Google Scholar]
  25. Lan X. Liu Y. Wang L. Wang H. Hu Z. Dong H. Yu Z. Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem. 2023 424 136464 10.1016/j.foodchem.2023.136464 37247602
    [Google Scholar]
  26. Aydin F. Yilmaz E. Soylak M. Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chem. 2018 243 442 447 10.1016/j.foodchem.2017.09.154 29146363
    [Google Scholar]
  27. Shaker Shiran H. Baghbanbashi M. Ghazizadeh Ahsaie F. Pazuki G. Study of curcumin partitioning in polymer-salt aqueous two phase systems. J. Mol. Liq. 2020 303 112629 112638 10.1016/j.molliq.2020.112629
    [Google Scholar]
  28. Nabati M. Mahkam M. Heidari H. Isolation and characterization of curcumin from powdered rhizomes of turmeric plant marketed in Maragheh city of Iran with Soxhlet technique. Iran. Chem. Commun. 2014 2 4 236 243
    [Google Scholar]
  29. Dutta B. Study of secondary metabolite constituents. and curcumin contents of six different species of genus Curcuma. J. Med. Plants Stud. 2015 3 5 116 119
    [Google Scholar]
  30. Farzaneh V. Carvalho I.S. Modelling of microwave. Assisted extraction (MAE) of anthocyanins (TMA). J. Appl. Res. Med. Aromat. Plan. 2017 6 92 100 10.1016/j.jarmap.2017.02.005
    [Google Scholar]
  31. Liang H. Wang W. Xu J. Zhang Q. Shen Z. Zeng Z. Li Q. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food Bioprod. Process. 2017 104 57 65 10.1016/j.fbp.2017.04.003
    [Google Scholar]
  32. Rodsamai T. Chaijan M. Nisoa M. Donlao N. Rawdkuen S. Chunglok W. Cheong L.Z. Panpipat W. Improved curcumin recovery and in vitro biological activity of turmeric extracts using nipa palm syrup– and nipa palm vinegar–based natural deep eutectic solvent (NADES) hybridized with microwave-assisted extraction. Food Bioproce. Technol. 2024 17 7 2009 2022 10.1007/s11947‑023‑03253‑4
    [Google Scholar]
  33. Rosarina D. Narawangsa D.R. Chandra N.S.R. Sari E. Hermansyah H. Optimization of ultrasonic—assisted extraction (UAE) method using natural deep eutectic solvent (NADES) to increase curcuminoid yield from Curcuma longa L., Curcuma xanthorrhiza, and Curcuma mangga Val. Molecules 2022 27 18 6080 6092 10.3390/molecules27186080 36144813
    [Google Scholar]
  34. Shirsath S.R. Sable S.S. Gaikwad S.G. Gogate P.R. Ultrasound assisted curcumin recovery from Curcuma aromatica: Understanding the effect of different operating parameters. Chem. Eng. Process. 2021 169 108604 108614 10.1016/j.cep.2021.108604
    [Google Scholar]
  35. Insuan W. Hansupalak N. Chahomchuen T. Extraction of curcumin from turmeric by ultrasonic-assisted extraction, identification, and evaluation of the biological activity. J. Herb. Pharm. 2022 11 2 188 196 10.34172/jhp.2022.23
    [Google Scholar]
  36. Gligor O. Mocan A. Moldovan C. Locatelli M. Crișan G. Ferreira I.C.F.R. Enzyme-assisted extractions of polyphenols: A comprehensive review. Trends Food Sci. Technol. 2019 88 302 315 10.1016/j.tifs.2019.03.029
    [Google Scholar]
  37. Kurmudle N. Kagliwal L.D. Bankar S.B. Singhal R.S. Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Biosci. 2013 3 3 36 41 10.1016/j.fbio.2013.06.001
    [Google Scholar]
  38. Sahne F. Mohammadi M. Najafpour G.D. Moghadamnia A.A. Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin. Ind. Crops Prod. 2017 95 686 694 10.1016/j.indcrop.2016.11.037
    [Google Scholar]
  39. Sharma A. Ray A. Singhal R.S. Co-extraction of turmeric (Curcuma longa L.) and dried coconut shreds by supercritical fluid extraction (SFE): Chemical and bioactivity profile. J. Clean. Prod. 2023 382 1 135313 10.1016/j.jclepro.2022.135313
    [Google Scholar]
  40. Osorio-Tobón J.F. Carvalho P.I.N. Rostagno M.A. Meireles M.A.A. Process integration for turmeric products extraction using supercritical fluids and pressurized liquids: Economic evaluation. Food Bioprod. Process. 2016 98 227 235 10.1016/j.fbp.2016.02.001
    [Google Scholar]
  41. Martinez-Correa H.A. Paula J.T. Kayano A.C.A.V. Queiroga C.L. Magalhães P.M. Costa F.T.M. Cabral F.A. Composition and antimalarial activity of extracts of Curcuma longa L. obtained by a combination of extraction processes using supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids 2017 119 122 129 10.1016/j.supflu.2016.08.017
    [Google Scholar]
  42. Chhouk K. Wahyudiono W. Kanda H. Goto M. Comparison of conventional and ultrasound assisted supercritical carbon dioxide extraction of curcumin from turmeric (Curcuma longa L.). Eng. J. 2017 21 5 53 65
    [Google Scholar]
  43. Loarce L. Oliver-Simancas R. Marchante L. Díaz-Maroto M.C. Alañón M.E. Implementation of subcritical water extraction with natural deep eutectic solvents for sustainable extraction of phenolic compounds from winemaking by-products. Food Res. Int. 2020 137 109728 10.1016/j.foodres.2020.109728 33233297
    [Google Scholar]
  44. Todd R. Baroutian S. A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc. J. Clean. Prod. 2017 158 349 358 10.1016/j.jclepro.2017.05.043
    [Google Scholar]
  45. Valizadeh Kiamahalleh M. Najafpour-Darzi G. Rahimnejad M. Moghadamnia A.A. Valizadeh Kiamahalleh M. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016 1022 191 198 10.1016/j.jchromb.2016.04.021 27107245
    [Google Scholar]
  46. Rezaei F. Eikani M.H. Nosratinia F. Bidaroni H.H. Optimization of ethanol-modified subcritical water extraction of curcuminoids from turmeric (Curcuma longa L.) rhizomes: Comparison with conventional techniques. Food Chem. 2023 410 135331 10.1016/j.foodchem.2022.135331 36610095
    [Google Scholar]
  47. Degot P. Huber V. Touraud D. Kunz W. Curcumin extracts from Curcuma Longa – Improvement of concentration, purity, and stability in food-approved and water-soluble surfactant-free microemulsions. Food Chem. 2021 339 1 128140 128147 10.1016/j.foodchem.2020.128140 33152894
    [Google Scholar]
  48. Dhingra D. Bisht M. Bhawna B. Pandey S. Enhanced solubility and improved stability of curcumin in novel water-in-deep eutectic solvent microemulsions. J. Mol. Liq. 2021 339 117037 117041 10.1016/j.molliq.2021.117037
    [Google Scholar]
  49. Taghavi Kevij H. Mohammadian M. Salami M. Complexation of curcumin with whey protein isolate for enhancing its aqueous solubility through a solvent-free pH-driven approach. J. Food Process. Preserv. 2019 43 12 e14227 e14235 10.1111/jfpp.14227
    [Google Scholar]
  50. Nampoothiri S.V. Praseetha E.K. Venugopalan V.V. Nirmala Menon A. Process development for the enrichment of curcuminoids in turmeric spent oleoresin and its inhibitory potential against LDL oxidation and angiotensin- converting enzyme. Int. J. Food Sci. Nutr. 2012 63 6 696 702 10.3109/09637486.2011.652941 22263555
    [Google Scholar]
  51. Tseng J.D. Lee H.L. Yeh K.L. Lee T. Recyclable positive azeotropes for the purification of curcumin with optimum purity and solvent capacity. Chem. Eng. Res. Des. 2022 180 200 211 10.1016/j.cherd.2022.02.019
    [Google Scholar]
  52. Zhang Q.W. Lin L.G. Ye W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018 13 1 20 10.1186/s13020‑018‑0177‑x 29692864
    [Google Scholar]
  53. Wang L. Hu J. Lv W. Lu W. Pei D. Lv Y. Wang W. Zhang M. Ding R. Lv M. Optimized extraction of astaxanthin from shrimp shells treated by biological enzyme and its separation and purification using macroporous resin. Food Chem. 2021 363 30 130369 130376 10.1016/j.foodchem.2021.130369 34274882
    [Google Scholar]
  54. Chen C. Jin S. Xiang X. Wang X. Shi Q. Yang M. Ji S. Huang R. Song C. Enrichment and cytotoxic activity of curcuminoids from turmeric using macroporous resins. J. Food Sci. 2017 82 9 2024 2030 10.1111/1750‑3841.13800 28837227
    [Google Scholar]
  55. Ahmed M. Ahmad S. Irfan M. A green ultra-fast liquid chromatographic method for quantification of curcumin in extract of Curcuma longa L. followed by confirmation via spectroscopic techniques. Separ. Sci. Plus 2021 4 3 118 127 10.1002/sscp.202000063
    [Google Scholar]
  56. Akter J. Islam M.Z. Hossain M.A. Takara K. Anti-tyrosinase properties of different species of turmeric and isolation of active compounds from Curcuma amada. Med. Chem. Res. 2021 30 9 1669 1676 10.1007/s00044‑021‑02764‑z
    [Google Scholar]
  57. Li L. Zhao J. Yang T. Sun B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: A review. Food Res. Int. 2022 153 110956 10.1016/j.foodres.2022.110956 35227478
    [Google Scholar]
  58. Lin T. Xu P. Chen B. Fang L. You H. Tong S. Solvent strength of aqueous phase for two typical biphasic solvent systems in high-speed countercurrent chromatography. J. Chromatogr. A 2022 1663 462767 462774 10.1016/j.chroma.2021.462767 34971862
    [Google Scholar]
  59. Pan Z.H. Ning D.S. Fu Y.X. Li D.P. Zou Z.Q. Xie Y.C. Yu L.L. Li L.C. Preparative isolation of piceatannol derivatives from passion fruit (Passiflora edulis) seeds by high-speed countercurrent chromatography combined with high-performance liquid chromatography and screening for α-glucosidase inhibitory activities. J. Agric. Food Chem. 2020 68 6 1555 1562 10.1021/acs.jafc.9b04871 31986026
    [Google Scholar]
  60. Li L. Yu Y. Lu D. Chen J. Guo J. Liang J. Zhang A. Yang Z. Bioassay-guided separation and identification of the anticancer composition from Curcuma longa L. by the combination strategy of methanol gradient countercurrent chromatography and ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. J. Sep. Sci. 2022 45 24 4478 4490 10.1002/jssc.202200348 36239144
    [Google Scholar]
  61. Si-Hung L. Bamba T. Current state and future perspectives of supercritical fluid chromatography. Trends Analyt. Chem. 2022 149 116550 116554 10.1016/j.trac.2022.116550
    [Google Scholar]
  62. West C. Recent trends in chiral supercritical fluid chromatography. Trends Analyt. Chem. 2019 120 115648 115656 10.1016/j.trac.2019.115648
    [Google Scholar]
  63. Kaplitz A.S. Berger T.A. Berger B.K. Schug K.A. A review of fraction collection technology for supercritical fluid chromatography. Trends Analyt. Chem. 2022 151 116588 10.1016/j.trac.2022.116588
    [Google Scholar]
  64. Song W. Qiao X. Liang W. Ji S. Yang L. Wang Y. Xu Y. Yang Y. Guo D. Ye M. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale. J. Sep. Sci. 2015 38 19 3450 3453 10.1002/jssc.201500686 26256681
    [Google Scholar]
  65. Purushothaman A. Rose K.T. Jacob J.M. Varatharaj R. Shashikala K. Janardanan D. Curcumin analogues with improved antioxidant properties: A theoretical exploration. Food Chem. 2022 373 Part B 131499 10.1016/j.foodchem.2021.131499 34763936
    [Google Scholar]
  66. Jakubczyk K. Drużga A. Katarzyna J. Skonieczna-Żydecka K. Antioxidant potential of curcumin: A meta-analysis of randomized clinical trials. Antioxidants 2020 9 11 1092 10.3390/antiox9111092 33172016
    [Google Scholar]
  67. Llano S. Gómez S. Londoño J. Restrepo A. Antioxidant activity of curcuminoids. Phys. Chem. Chem. Phys. 2019 21 7 3752 3760 10.1039/C8CP06708B 30702098
    [Google Scholar]
  68. Zhou Y. Zhang J. Tang R.C. Zhang J. Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Ind. Crops Prod. 2015 64 224 232 10.1016/j.indcrop.2014.09.041
    [Google Scholar]
  69. Zhou Y. Tang R.C. Modification of curcumin with a reactive UV absorber and its dyeing and functional properties for silk. Dyes Pigments 2016 134 203 211 10.1016/j.dyepig.2016.07.016
    [Google Scholar]
  70. Zhao P. Fang J. Zhao Y. Wang Y. Chen X. Cao H. Color matching and functional modification of silk by curcuminoids and luteolin. Yinran 2024 3 24 28 10.3969/j.yinran.202403006
    [Google Scholar]
  71. Gu Y. Pais G. Becker V. Körbel C. Ampofo E. Ebert E. Hohneck J. Ludwig N. Meese E. Bohle R.M. Zhao Y. Menger M.D. Laschke M.W. Suppression of endothelial miR-22 mediates non-small cell lung cancer cell-induced angiogenesis. Mol. Ther. Nucleic Acids 2021 26 849 864 10.1016/j.omtn.2021.10.003 34729252
    [Google Scholar]
  72. Sun X. Li Y. Lin Y. Mei Y. Lin L. Ho K.T. Huang K. Zhan J. Chen C. Zeng J. Wu D. Li J. Liu J. Li G. MiR-22-3p modulated the antioxidant activity of curcumin via targeting the cardiolipin synthase gene CRLS1 in LO2 cells. J. Funct. Foods 2023 104 105541 10.1016/j.jff.2023.105541
    [Google Scholar]
  73. Silver L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011 24 1 71 109 10.1128/CMR.00030‑10 21233508
    [Google Scholar]
  74. Zhou Y. Chen X. Chen T. Chen X. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci. Technol. 2022 123 264 280 10.1016/j.tifs.2022.03.020
    [Google Scholar]
  75. Dai C. Lin J. Li H. Shen Z. Wang Y. Velkov T. Shen J. The natural product curcumin as an antibacterial agent: Current achievements and problems. Antioxidants 2022 11 3 459 10.3390/antiox11030459 35326110
    [Google Scholar]
  76. Zheng D. Huang C. Huang H. Zhao Y. Khan M.R.U. Zhao H. Huang L. Antibacterial mechanism of curcumin: A review. Chem. Biodivers. 2020 17 8 e2000171 10.1002/cbdv.202000171 32533635
    [Google Scholar]
  77. Chen C. Chen L. Mao C. Jin L. Wu S. Zheng Y. Cui Z. Li Z. Zhang Y. Zhu S. Jiang H. Liu X. Natural extracts for antibacterial applications. Small 2024 20 9 2306553 10.1002/smll.202306553 37847896
    [Google Scholar]
  78. Liu Z. Smart J.D. Pannala A.S. Recent developments in formulation design for improving oral bioavailability of curcumin: A review. J. Drug Deliv. Sci. Technol. 2020 60 102082 10.1016/j.jddst.2020.102082
    [Google Scholar]
  79. Obeid M.A. Alsaadi M. Aljabali A.A. Recent updates in curcumin delivery. J. Liposome Res. 2023 33 1 53 64 10.1080/08982104.2022.2086567 35699160
    [Google Scholar]
  80. Jamwal R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. J. Integr. Med. 2018 16 6 367 374 10.1016/j.joim.2018.07.001 30006023
    [Google Scholar]
  81. Tabanelli R. Brogi S. Calderone V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics 2021 13 10 1715 10.3390/pharmaceutics13101715 34684008
    [Google Scholar]
  82. Stohs S.J. Ji J. Bucci L.R. Preuss H.G. A comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: a randomized, double-blind, crossover study. J. Am. Coll. Nutr. 2018 37 1 51 59 10.1080/07315724.2017.1358118 29043927
    [Google Scholar]
  83. Modasiya M.K. Patel V.M. Studies on solubility of curcumin. Int. J. Pharm. Life Sci. 2012 3 1490 1497
    [Google Scholar]
  84. Huang F. Gao Y. Zhang Y. Cheng T. Ou H. Yang L. Liu J. Shi L. Liu J. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl. Mater. Interfaces 2017 9 20 16880 16889 10.1021/acsami.7b03347 28481077
    [Google Scholar]
  85. Parsana N. Ukani H. Chauhan D.S. El Seoud O. Mehra S. Kumar A. Raje N. Malek N. Biocompatible, injectable and self-healable MOF-based anti-freezing eutectogels for higher encapsulation and sustained release of the anticancer drug curcumin. RSC Pharmaceutics 2024 1 2 317 332 10.1039/D3PM00088E
    [Google Scholar]
  86. Wang M. Yi N. Fang K. Zhao Z. Xie R. Chen W. Deep colorful antibacterial wool fabrics by high-efficiency pad dyeing with insoluble curcumin. Chem. Eng. J. 2023 452 139121 139125 10.1016/j.cej.2022.139121
    [Google Scholar]
  87. Shimizu K. Funamoto M. Sunagawa Y. Shimizu S. Katanasaka Y. Miyazaki Y. Wada H. Hasegawa K. Morimoto T. Anti-inflammatory action of curcumin and its use in the treatment of lifestyle-related diseases. Eur. Cardiol. 2019 14 2 117 122 10.15420/ecr.2019.17.2 31360234
    [Google Scholar]
  88. Benameur T. Frota Gaban S.V. Giacomucci G. Filannino F.M. Trotta T. Polito R. Messina G. Porro C. Panaro M.A. The effects of curcumin on inflammasome: Latest update. Molecules 2023 28 2 742 760 10.3390/molecules28020742 36677800
    [Google Scholar]
  89. Hasanzadeh S. Read M.I. Bland A.R. Majeed M. Jamialahmadi T. Sahebkar A. Curcumin: An inflammasome silencer. Pharmacol. Res. 2020 159 104921 10.1016/j.phrs.2020.104921 32464325
    [Google Scholar]
  90. Sneharani A.H. Curcumin–sunflower protein nanoparticles: A potential antiinflammatory agent. J. Food Biochem. 2019 43 8 e12909 e12916 10.1111/jfbc.12909 31368579
    [Google Scholar]
  91. Li G. Duan L. Yang F. Yang L. Deng Y. Yu Y. Xu Y. Zhang Y. Curcumin suppress inflammatory response in traumatic brain injury via p38/ MAPK signaling pathway. Phytother. Res. 2022 36 3 1326 1337 10.1002/ptr.7391 35080289
    [Google Scholar]
  92. Chen J. Wang Z. Zheng Z. Chen Y. Khor S. Shi K. He Z. Wang Q. Zhao Y. Zhang H. Li X. Li J. Yin J. Wang X. Xiao J. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis. 2017 8 10 e3090 e3090 10.1038/cddis.2017.490 28981091
    [Google Scholar]
  93. Gao F. Lei J. Zhang Z. Yang Y. You H. Curcumin alleviates LPS-induced inflammation and oxidative stress in mouse microglial BV2 cells by targeting miR-137-3p/NeuroD1. RSC Advances 2019 9 66 38397 38406 10.1039/C9RA07266G 35540218
    [Google Scholar]
  94. Zhang M. Zhang X. Tian T. Zhang Q. Wen Y. Zhu J. Xiao D. Cui W. Lin Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater. 2022 8 368 380 10.1016/j.bioactmat.2021.06.003 34541407
    [Google Scholar]
  95. Cai X. He Y. Cai L. Zhan J. Li Q. Zhong S. Hou H. Wang W. Qiu X. An injectable elastic hydrogel crosslinked with curcumin–gelatin nanoparticles as a multifunctional dressing for the rapid repair of bacterially infected wounds. Biomater. Sci. 2023 11 9 3227 3240 10.1039/D2BM02126A 36935633
    [Google Scholar]
  96. Oglah M.K. Mustafa Y.F. Bashir M.K. Jasim M.H. Mustafa Y.F. Curcumin and its derivatives: A review of their biological activities. Syst. Rev. Pharm. 2020 11 3 472 481
    [Google Scholar]
  97. Tan A.C. Ashley D.M. López G.Y. Malinzak M. Friedman H.S. Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020 70 4 299 312 10.3322/caac.21613 32478924
    [Google Scholar]
  98. Walker B.C. Mittal S. Antitumor activity of curcumin in glioblastoma. Int. J. Mol. Sci. 2020 21 24 9435 10.3390/ijms21249435 33322413
    [Google Scholar]
  99. Wong S.C. Kamarudin M.N.A. Naidu R. Anticancer. mechanism of curcumin on human glioblastoma. Nutrients 2021 13 3 950 969 10.3390/nu13030950 33809462
    [Google Scholar]
  100. Tan X. Kim G. Lee D. Oh J. Kim M. Piao C. Lee J. Lee M.S. Jeong J.H. Lee M. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomater. Sci. 2018 6 2 407 417 10.1039/C7BM01088E 29340361
    [Google Scholar]
  101. Lin X. Wang L. Zhao L. Zhu Z. Chen T. Chen S. Tao Y. Zeng T. Zhong Y. Sun H. Wang Z. Zheng W. Zhang Y. Wu W. Nan K. Chen T. Curcumin micelles suppress gastric tumor cell growth by upregulating ROS generation, disrupting redox equilibrium and affecting mitochondrial bioenergetics. Food Funct. 2020 11 5 4146 4159 10.1039/D0FO00260G 32347864
    [Google Scholar]
  102. Xiang L. He B. Liu Q. Hu D. Liao W. Li R. Peng X. Wang Q. Zhao G. Antitumor effects of curcumin on the proliferation, migration and apoptosis of human colorectal carcinoma HCT-116 cells. Oncol. Rep. 2020 44 5 1997 2008 10.3892/or.2020.7765 33000266
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673353286241219061902
Loading
/content/journals/cmc/10.2174/0109298673353286241219061902
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: extraction ; antioxidant ; Bioactivity ; dyeing ; purification ; curcumin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test