Skip to content
2000
image of Exploring the Therapeutic Potential of Plumbagin: Its Current Applications in Cancer and Neuropsychiatric Disorders

Abstract

Plumbagin (PL) is an important natural active ingredient in traditional Chinese medicine derived from the . It possesses a variety of biological activities, such as anti-inflammatory, anticancer, antioxidant, antimicrobial, and neuroprotective properties, and has great potential for utilization in disease treatment and prevention. Cancer and neurological and psychiatric diseases are two major categories of diseases that currently threaten the physical and mental health of human beings, and their increasing incidence is causing a serious economic burden to all humanity. Based on the physical and chemical properties and pharmacokinetics of plumbagin, this study will focus on summarizing the application research status of plumbagin in cancer, neurological, and psychiatric diseases and analyze the molecular targets and action pathways of its therapeutic efficacy. This study will also briefly summarize the application of plumbagin in other diseases, as well as the existing problems and future development direction of plumbagin in clinical application, aiming to provide new perspectives and strategies for the development of new drugs and the treatment of existing diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345583241226093530
2024-01-23
2025-04-09
Loading full text...

Full text loading...

References

  1. Tan M. Wang H. Chen Z. Liu Y. Liang H. Advances in studies on chemical constituents and pharmacological activities of Plumbago zeylanica. Chin. Tradit. Herbal Drugs 2007 38 2 289 293
    [Google Scholar]
  2. Wang J. Li J. Peng Y. Zhang Y. Tan L. Zhao T. Research progress of Plumbago. Zhonghua Zhongyiyao Xuekan 2012 30 7 1626 1628
    [Google Scholar]
  3. Li H. Hu H. Progress on pharmacological effects of Plumbagin. Jilin Med. J. 2022 43 11 3095 3098
    [Google Scholar]
  4. Thakor N. Janathia B. Plumbagin: A potential candidate for future research and development. Curr. Pharm. Biotechnol. 2022 23 15 1800 1812 10.2174/1389201023666211230113146 34967293
    [Google Scholar]
  5. Yadav A.M. Bagade M.M. Ghumnani S. Raman S. Saha B. Kubatzky K.F. Ashma R. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts. Biol. Chem. 2022 403 2 211 229 10.1515/hsz‑2021‑0290 34882360
    [Google Scholar]
  6. Silva L.M.N. França W.W.M. Santos V.H.B. Souza R.A.F. Silva A.M. Diniz E.G.M. Aguiar T.W.A. Rocha J.V.R. Souza M.A.A. Nascimento W.R.C. Neto L.R.G. Filho C.I.J. Ximenes E.C.P.A. Araújo H.D.A. Aires A.L. Albuquerque M.C.P.A. Plumbagin: A promising in vivo antiparasitic candidate against schistosoma mansoni and in silico pharmacokinetic properties (ADMET). Biomedicines 2023 11 9 2340 10.3390/biomedicines11092340 37760782
    [Google Scholar]
  7. Panda S.S. Biswal B.K. The phytochemical plumbagin: Mechanism behind its “pleiotropic” nature and potential as an anticancer treatment. Arch. Toxicol. 2024 98 11 3585 3601 10.1007/s00204‑024‑03861‑9 39271481
    [Google Scholar]
  8. Sharma B. Dhiman C. Hasan G.M. Shamsi A. Hassan M.I. Pharmacological features and therapeutic implications of plumbagin in cancer and metabolic disorders: A narrative review. Nutrients 2024 16 17 3033 10.3390/nu16173033 39275349
    [Google Scholar]
  9. Dominguez C.R. Medina P.M. Gonzalez L.J.S. Velasco G.M. Cazares A.D. The double-edge sword of autophagy in cancer: From tumor suppression to pro-tumor activity. Front. Oncol. 2020 10 578418 10.3389/fonc.2020.578418 33117715
    [Google Scholar]
  10. Yang J. Pi C. Wang G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed. Pharmacother. 2018 103 699 707 10.1016/j.biopha.2018.04.072 29680738
    [Google Scholar]
  11. Lin Y. Chen Y. Wang S. Ma J. Peng Y. Yuan X. Lv B. Chen W. Wei Y. Plumbagin induces autophagy and apoptosis of SMMC‐7721 cells in vitro and in vivo. J. Cell. Biochem. 2019 120 6 9820 9830 10.1002/jcb.28262 30536473
    [Google Scholar]
  12. Lushchak V.I. Storey K.B. Oxidative stress concept updated: Definitions, classifications, and regulatory pathways implicated. Excli. J. 2021 20 956 967 34267608
    [Google Scholar]
  13. Forman H.J. Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021 20 9 689 709 10.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  14. Sosa V. Moliné T. Somoza R. Paciucci R. Kondoh H. LLeonart M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev. 2013 12 1 376 390 10.1016/j.arr.2012.10.004 23123177
    [Google Scholar]
  15. Nakamura H. Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021 112 10 3945 3952 10.1111/cas.15068 34286881
    [Google Scholar]
  16. Okuda K. Umemura A. Kataoka S. Yano K. Takahashi A. Okishio S. Taketani H. Seko Y. Nishikawa T. Yamaguchi K. Moriguchi M. Nakagawa H. Liu Y. Mitsumoto Y. Kanbara Y. Shima T. Okanoue T. Itoh Y. Enhanced antitumor effect in liver cancer by amino acid depletion-induced oxidative stress. Front. Oncol. 2021 11 758549 10.3389/fonc.2021.758549 34796113
    [Google Scholar]
  17. Xu J. Ji L. Ruan Y. Wan Z. Lin Z. Xia S. Tao L. Zheng J. Cai L. Wang Y. Liang X. Cai X. UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1β in hepatocellular carcinoma. Signal Transduct. Target. Ther. 2021 6 1 190 10.1038/s41392‑021‑00594‑4 34001851
    [Google Scholar]
  18. Liu H. Zhang W. Jin L. Liu S. Liang L. Wei Y. Plumbagin exhibits genotoxicity and induces G2/M cell cycle arrest via ROS-mediated oxidative stress and activation of ATM-p53 signaling pathway in hepatocellular cells. Int. J. Mol. Sci. 2023 24 7 6279 10.3390/ijms24076279 37047251
    [Google Scholar]
  19. Wei Y. Lin Y. Chen W. Liu S. Jin L. Huang D. Computational and in vitro analysis of plumbagin’s molecular mechanism for the treatment of hepatocellular carcinoma. Front. Pharmacol. 2021 12 594833 10.3389/fphar.2021.594833
    [Google Scholar]
  20. Han S. Bi S. Guo T. Sun D. Zou Y. Wang L. Song L. Chu D. Liao A. Song X. Yu Z. Guo J. Nano co-delivery of plumbagin and dihydrotanshinone I reverses immunosuppressive TME of liver cancer. J. Control. Release 2022 348 250 263 10.1016/j.jconrel.2022.05.057 35660631
    [Google Scholar]
  21. Yao L. Yan D. Jiang B. Xue Q. Chen X. Huang Q. Qi L. Tang D. Chen X. Liu J. Plumbagin is a novel GPX4 protein degrader that induces apoptosis in hepatocellular carcinoma cells. Free Radic. Biol. Med. 2023 203 1 10 10.1016/j.freeradbiomed.2023.03.263 37011699
    [Google Scholar]
  22. Wu J. Ding Z. Tu J. Osama A. Nie Q. Cai W. Zhang B. Unveiling the anticancer potential of plumbagin: Targeting pyruvate kinase M2 to induce oxidative stress and apoptosis in hepatoma cells. RSC Med. Chem. 2024 d4md00519h 10.1039/d4md00519h 39363929
    [Google Scholar]
  23. Wei Y. Yang Q. Zhang Y. Zhao T. Liu X. Zhong J. Ma J. Chen Y. Zhao C. Li J. Plumbagin restrains hepatocellular carcinoma angiogenesis by suppressing the migration and invasion of tumor-derived vascular endothelial cells. Oncotarget 2017 8 9 15230 15241 10.18632/oncotarget.14774 28122355
    [Google Scholar]
  24. Zhong J. Li J. Wei J. Huang D. Huo L. Zhao C. Lin Y. Chen W. Wei Y. Plumbagin restrains hepatocellular carcinoma angiogenesis by stromal cell-derived factor (SDF-1)/CXCR4-CXCR7 axis. Med. Sci. Monit. 2019 25 6110 6119 10.12659/MSM.915782 31415486
    [Google Scholar]
  25. Du Y.Q. Yuan B. Ye Y.X. Zhou F. Liu H. Huang J.J. Wei Y.F. Plumbagin regulates snail to inhibit hepatocellular carcinoma epithelial-mesenchymal transition in vivo and in vitro. J. Hepatocell. Carcinoma 2024 11 565 580 10.2147/JHC.S452924 38525157
    [Google Scholar]
  26. Lee E. Nichols P. Groshen S. Spicer D. Lee A.S. GRP78 as potential predictor for breast cancer response to adjuvant taxane therapy. Int. J. Cancer 2011 128 3 726 731 10.1002/ijc.25370 20473863
    [Google Scholar]
  27. Kawiak A. Domachowska A. Jaworska A. Lojkowska E. Plumbagin sensitizes breast cancer cells to tamoxifen-induced cell death through GRP78 inhibition and Bik upregulation. Sci. Rep. 2017 7 1 43781 10.1038/srep43781 28287102
    [Google Scholar]
  28. Zhang X.Q. Yang C.Y. Rao X.F. Xiong J.P. Plumbagin shows anti-cancer activity in human breast cancer cells by the upregulation of p53 and p21 and suppression of G1 cell cycle regulators. Eur. J. Gynaecol. Oncol. 2016 37 1 30 35 27048106
    [Google Scholar]
  29. Binoy A. Nedungadi D. Katiyar N. Bose C. Shankarappa S.A. Nair B.G. Mishra N. Plumbagin induces paraptosis in cancer cells by disrupting the sulfhydryl homeostasis and proteasomal function. Chem. Biol. Interact. 2019 310 108733 10.1016/j.cbi.2019.108733
    [Google Scholar]
  30. Khan A. Zhang Y. Ma N. Shi J. Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther. 2024 31 11 1599 1610 10.1038/s41417‑024‑00811‑6
    [Google Scholar]
  31. Song W. Liang C. Sun Y. Morii S. Yomogida S. Isaji T. Fukuda T. Hang Q. Hara A. Nakano M. Gu J. Expression of GnT-III decreases chemoresistance via negatively regulating P-glycoprotein expression: Involvement of the TNFR2-NF-κB signaling pathway. J. Biol. Chem. 2023 299 4 103051 10.1016/j.jbc.2023.103051 36813234
    [Google Scholar]
  32. Ahmad A. Messeha S.S. Zarmouh N.O. Mendonca P. Alwagdani H. Kolta M.G. Soliman K.F.A. The inhibitory effects of plumbagin on the NF-қB pathway and CCL2 release in racially different triple-negative breast cancer cells. PLoS One 2018 13 7 e0201116 30044842
    [Google Scholar]
  33. Ahmad A. Banerjee S. Wang Z. Kong D. Sarkar F.H. Plumbagin‐induced apoptosis of human breast cancer cells is mediated by inactivation of NF‐κB and Bcl‐2. J. Cell. Biochem. 2008 105 6 1461 1471 10.1002/jcb.21966 18980240
    [Google Scholar]
  34. Cao L. Wang M. Dong Y. Xu B. Chen J. Ding Y. Qiu S. Li L. Zaharieva K.E. Zhou X. Xu Y. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 2020 11 2 145 10.1038/s41419‑020‑2336‑0 32094325
    [Google Scholar]
  35. Jampasri S. Reabroi S. Tungmunnithum D. Parichatikanond W. Pinthong D. Plumbagin suppresses breast cancer progression by downregulating HIF-1α expression via a PI3K/Akt/mTOR independent pathway under hypoxic condition. Molecules 2022 27 17 5716 10.3390/molecules27175716 36080483
    [Google Scholar]
  36. Manu K.A. Shanmugam M.K. Rajendran P. Li F. Ramachandran L. Hay H.S. Kannaiyan R. Swamy S.N. Vali S. Kapoor S. Ramesh B. Bist P. Koay E.S. Lim L.H.K. Ahn K.S. Kumar A.P. Sethi G. Plumbagin inhibits invasion and migration of breast and gastric cancer cells by downregulating the expression of chemokine receptor CXCR4. Mol. Cancer 2011 10 1 107 10.1186/1476‑4598‑10‑107 21880153
    [Google Scholar]
  37. Yan W. Tu B. Liu Y. Wang T. Qiao H. Zhai Z. Li H. Tang T. Suppressive effects of plumbagin on invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and down-regulation of inflammatory cytokine expressions. Bone Res. 2013 1 4 362 370 10.4248/BR201304007 26273514
    [Google Scholar]
  38. Kawiak A. Domachowska A. Lojkowska E. Plumbagin increases paclitaxel-induced cell death and overcomes paclitaxel resistance in breast cancer cells through ERK-mediated apoptosis induction. J. Nat. Prod. 2019 82 4 878 885 10.1021/acs.jnatprod.8b00964 30810041
    [Google Scholar]
  39. Sakunrangsit N. Kalpongnukul N. Pisitkun T. Ketchart W. Plumbagin enhances tamoxifen sensitivity and inhibits tumor invasion in endocrine resistant breast cancer through EMT regulation. Phytother. Res. 2016 30 12 1968 1977 10.1002/ptr.5702 27530731
    [Google Scholar]
  40. Panda M. Tripathi S.K. Biswal B.K. Plumbagin promotes mitochondrial mediated apoptosis in gefitinib sensitive and resistant A549 lung cancer cell line through enhancing reactive oxygen species generation. Mol. Biol. Rep. 2020 47 6 4155 4168 10.1007/s11033‑020‑05464‑w 32444975
    [Google Scholar]
  41. Tripathi S.K. Rengasamy K.R.R. Biswal B.K. Plumbagin engenders apoptosis in lung cancer cells via caspase-9 activation and targeting mitochondrial-mediated ROS induction. Arch. Pharm. Res. 2020 43 2 242 256 10.1007/s12272‑020‑01221‑6 32034669
    [Google Scholar]
  42. Li Y.C. He S.M. He Z.X. Li M. Yang Y. Pang J.X. Zhang X. Chow K. Zhou Q. Duan W. Zhou Z.W. Yang T. Huang G.H. Liu A. Qiu J.X. Liu J.P. Zhou S.F. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. Cancer Lett. 2014 344 2 239 259 10.1016/j.canlet.2013.11.001 24280585
    [Google Scholar]
  43. Jiang Z.B. Xu C. Wang W. Zhang Y.Z. Huang J.M. Xie Y.J. Wang Q.Q. Fan X.X. Yao X.J. Xie C. Wang X.R. Yan P.Y. Ma Y.P. Wu Q.B. Leung E.L.H. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells. Pharmacol. Res. 2021 169 105656 10.1016/j.phrs.2021.105656 33964470
    [Google Scholar]
  44. Shieh J.M. Chiang T.A. Chang W.T. Chao C.H. Lee Y.C. Huang G.Y. Shih Y.X. Shih Y.W. Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-κB and AP-1 via ERK signaling pathway in A549 human lung cancer cells. Mol. Cell. Biochem. 2010 335 1-2 181 193 10.1007/s11010‑009‑0254‑7 19768635
    [Google Scholar]
  45. Yu T. Xu Y.Y. Zhang Y.Y. Li K.Y. Shao Y. Liu G. Plumbagin suppresses the human large cell lung cancer cell lines by inhibiting IL-6/STAT3 signaling in vitro. Int. Immunopharmacol. 2018 55 290 296 10.1016/j.intimp.2017.12.021 29294439
    [Google Scholar]
  46. Li Y. Jiang L. Peng L. Zhu Z. Gao Q. Li Q. Study on mechanism of Plumbagin combined with Cisplatin on inhibition of lung cancer growth by HIPPO signaling pathway. Zhong Yao Cai 2022 45 3 693 697
    [Google Scholar]
  47. Cao Y.Y. Yu J. Liu T.T. Yang K.X. Yang L.Y. Chen Q. Shi F. Hao J.J. Cai Y. Wang M.R. Lu W.H. Zhang Y. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis. 2018 9 2 17 10.1038/s41419‑017‑0068‑6 29339720
    [Google Scholar]
  48. Li J. Li J. Cai G. Shen L. Lu F. Proapoptotic and growth-inhibitory effects of plumbagin on human gastric cancer cells via suppression of signal transducer and activator of transcription 3 and protein kinase B. Altern. Ther. Health Med. 2017 23 5 42 48 28236621
    [Google Scholar]
  49. Shu J. Wang K. Zhao D. Zhou Y. Plumbagin induces apoptosis, cell cycle arrest, and inhibits protein synthesis in LoVo colon cancer cells: A proteomic analysis. Chem. Biol. Drug Des. 2023 102 5 1075 1084 10.1111/cbdd.14305 37558615
    [Google Scholar]
  50. Wang B. Kong W. Lv L. Wang Z. Plumbagin induces ferroptosis in colon cancer cells by regulating p53-related SLC7A11 expression. Heliyon 2024 10 7 e28364 10.1016/j.heliyon.2024.e28364 38596137
    [Google Scholar]
  51. Palanisamy R. Kahingalage I.N. Archibald D. Casari I. Falasca M. Synergistic anticancer activity of plumbagin and xanthohumol combination on pancreatic cancer models. Int. J. Mol. Sci. 2024 25 4 2340 10.3390/ijms25042340 38397018
    [Google Scholar]
  52. Chen P.O.H.A.N. Lu H.K. Renn T.Y. Chang T.M. Lee C.J. Tsao Y.T. Chuang P.O.K.A.I. Liu J.F. Plumbagin induces reactive oxygen species and endoplasmic reticulum stress-related cell apoptosis in human oral squamous cell carcinoma. Anticancer Res. 2024 44 3 1173 1182 10.21873/anticanres.16912 38423664
    [Google Scholar]
  53. Lin C.L. Yu C.I. Lee T.H. Chuang J.M.J. Han K.F. Lin C.S. Huang W.P. Chen J.Y.F. Chen C.Y. Lin M.Y. Lee C.H. Plumbagin induces the apoptosis of drug-resistant oral cancer in vitro and in vivo through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Phytomedicine 2023 111 154655 10.1016/j.phymed.2023.154655 36689858
    [Google Scholar]
  54. Xin Y. Jiang Q. Liu C. Qiu J. Plumbagin has an inhibitory effect on the growth of TSCC PDX model and it enhances the anticancer efficacy of cisplatin. Aging 2023 15 21 12225 12250 10.18632/aging.205175 37925175
    [Google Scholar]
  55. Li B. Gu X. Wu M. Zhao Y. Yang J. Feng L. Gou J. Chen L. Li T. Li L. Wang L. Zhu L. Zhang K. Plumbagin inhibits the proliferation of nasopharyngeal carcinoma 6-10B cells by upregulation of reactive oxygen species. Anticancer Drugs 2018 29 9 890 897 10.1097/CAD.0000000000000665 30119131
    [Google Scholar]
  56. Liang X. Pan Q. Liao Y. Nie L. Yang L. Liu F. Su M. In silico analysis and experimental validation to exhibit anti‐nasopharyngeal carcinoma effects of plumbagin, an anti‐cancer compound. J. Sci. Food Agric. 2022 102 12 5460 5467 10.1002/jsfa.11900 35355274
    [Google Scholar]
  57. Zhan S. Lu L. Pan S. Wei X. Miao R. Liu X. Xue M. Lin X. Xu H. Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth. Br. J. Cancer 2022 127 2 364 376 10.1038/s41416‑022‑01800‑y 35396498
    [Google Scholar]
  58. Jaiswal A. Sabarwal A. Mishra N.J.P. Singh R.P. Plumbagin induces ROS-mediated apoptosis and cell cycle arrest and inhibits EMT in human cervical carcinoma cells. RSC Advances 2018 8 56 32022 32037 10.1039/C8RA05339A 35547513
    [Google Scholar]
  59. Sidhu H. Capalash N. Plumbagin downregulates UHRF1, p-Akt, MMP-2 and suppresses survival, growth and migration of cervical cancer CaSki cells. Toxicol. In Vitro 2023 86 105512 10.1016/j.tiv.2022.105512 36336213
    [Google Scholar]
  60. Zhang R. Wang Z. You W. Zhou F. Guo Z. Qian K. Xiao Y. Wang X. Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT. Cancer Cell Int. 2020 20 1 520 10.1186/s12935‑020‑01607‑y 33117085
    [Google Scholar]
  61. Shah A. Varma M. Bhandari R. Exploring sulforaphane as neurotherapeutic: Targeting Nrf2-Keap & Nf-Kb pathway crosstalk in ASD. Metab. Brain Dis. 2023 39 3 373 385 10.1007/s11011‑023‑01224‑4 37249861
    [Google Scholar]
  62. Karin M. Yamamoto Y. Wang Q.M. The IKK NF-κB system: A treasure trove for drug development. Nat. Rev. Drug Discov. 2004 3 1 17 26 10.1038/nrd1279 14708018
    [Google Scholar]
  63. Hong K.W. Zhou B.L. Plumbagin protects against hydrogen peroxide-induced neurotoxicity by modulating NF-κB and Nrf-2. Arch. Med. Sci. 2018 14 5 1112 1118 10.5114/aoms.2016.64768 30154895
    [Google Scholar]
  64. Wang S. Zhang Z. Zhao S. Plumbagin inhibits amyloid-β-induced neurotoxicity. Neuroreport 2018 29 15 1269 1274 10.1097/WNR.0000000000001103 30095583
    [Google Scholar]
  65. Zhang Q. Zhao S. Zheng W. Fu H. Wu T. Hu F. Plumbagin attenuated oxygen-glucose deprivation/reoxygenation-induced injury in human SH-SY5Y cells by inhibiting NOX4-derived ROS-activated NLRP3 inflammasome. Biosci. Biotechnol. Biochem. 2020 84 1 134 142 10.1080/09168451.2019.1664893 31490096
    [Google Scholar]
  66. Arruri V. Komirishetty P. Areti A. Dungavath S.K.N. Kumar A. Nrf2 and NF-κB modulation by Plumbagin attenuates functional, behavioural and biochemical deficits in rat model of neuropathic pain. Pharmacol. Rep. 2017 69 4 625 632 10.1016/j.pharep.2017.02.006 28505604
    [Google Scholar]
  67. Son T.G. Camandola S. Arumugam T.V. Cutler R.G. Telljohann R.S. Mughal M.R. Moore T.A. Luo W. Yu Q.S. Johnson D.A. Johnson J.A. Greig N.H. Mattson M.P. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J. Neurochem. 2010 112 5 1316 1326 10.1111/j.1471‑4159.2009.06552.x 20028456
    [Google Scholar]
  68. Nakhate K.T. Bharne A.P. Verma V.S. Aru D.N. Kokare D.M. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed. Pharmacother. 2018 101 379 390 10.1016/j.biopha.2018.02.052 29501041
    [Google Scholar]
  69. Chen X.J. Zhang J.G. Wu L. Plumbagin inhibits neuronal apoptosis, intimal hyperplasia and also suppresses TNF-α/NF-κB pathway induced inflammation and matrix metalloproteinase-2/9 expression in rat cerebral ischemia. Saudi J. Biol. Sci. 2018 25 6 1033 1039 10.1016/j.sjbs.2017.03.006 30174499
    [Google Scholar]
  70. Su Y. Li M. Wang Q. Xu X. Qin P. Huang H. Zhang Y. Zhou Y. Yan J. Rai S.N. Inhibition of the TLR/NF-κB signaling pathway and improvement of autophagy mediates neuroprotective effects of plumbagin in parkinson’s disease. Oxid. Med. Cell. Longev. 2022 2022 1 14 10.1155/2022/1837278
    [Google Scholar]
  71. Messeha S.S. Zarmouh N.O. Mendonca P. Kolta M.G. Soliman K.F.A. The attenuating effects of plumbagin on pro-inflammatory cytokine expression in LPS-activated BV-2 microglial cells. J. Neuroimmunol. 2017 313 129 137 10.1016/j.jneuroim.2017.09.007 28950995
    [Google Scholar]
  72. Ding M. Han R. Xie Y. Wei Z. Xue S. Zhang F. Cao Z. Plumbagin, a novel TRPV2 inhibitor, ameliorates microglia activation and brain injury in a middle cerebral artery occlusion/reperfusion mouse model. Br. J. Pharmacol. 2024 bph.17343 10.1111/bph.17343 39363399
    [Google Scholar]
  73. D’Amato C.L. Speranza L. Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci. 2020 21 20 7777 10.3390/ijms21207777 33096634
    [Google Scholar]
  74. Yuan J.H. Pan F. Chen J. Chen C.E. Xie D.P. Jiang X.Z. Guo S.J. Zhou J. Neuroprotection by plumbagin involves BDNF-TrkB-PI3K/Akt and ERK1/2/JNK pathways in isoflurane-induced neonatal rats. J. Pharm. Pharmacol. 2017 69 7 896 906 10.1111/jphp.12681 28464236
    [Google Scholar]
  75. Pan P.H. Wang Y.Y. Lin S.Y. Liao S.L. Chen Y.F. Huang W.C. Chen C.J. Chen W.Y. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats. Biomed. Pharmacother. 2022 151 113133 10.1016/j.biopha.2022.113133 35594710
    [Google Scholar]
  76. Zaki A.M. El-Tanbouly D.M. Abdelsalam R.M. Zaki H.F. Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: Role of high mobility group box 1 in inflammation, oxidative stress and apoptosis. Biomed. Pharmacother. 2018 106 785 793 10.1016/j.biopha.2018.07.004 29990872
    [Google Scholar]
  77. Chen S. Chen Y. Chen B. Cai Y.J. Zou Z.L. Wang J.G. Lin Z. Wang X.D. Fu L.Y. Hu Y.R. Chen Y.P. Chen D.Z. Plumbagin ameliorates ccl-induced hepatic fibrosis in rats via the epidermal growth factor receptor signaling pathway. Evid. Based Complement. Alternat. Med. 2015 2015 1 12
    [Google Scholar]
  78. Mehdizadeh S. Taherian M. Bayati P. Mousavizadeh K. Pashangzadeh S. Anisian A. Mojtabavi N. Plumbagin attenuates Bleomycin-induced lung fibrosis in mice. Allergy Asthma Clin. Immunol. 2022 18 1 93 10.1186/s13223‑022‑00734‑7 36271442
    [Google Scholar]
  79. Liu Z. Wei J. Sun H. Xu L. Plumbagin ameliorates LPS‐induced acute lung injury by regulating PI3K/AKT/mTOR and Keap1‐Nrf2/HO‐1 signalling pathways. J. Cell. Mol. Med. 2024 28 13 e18386 10.1111/jcmm.18386 38990057
    [Google Scholar]
  80. Zhang L. Liang D. Liu L. Liu L. Plumbagin alleviates obesity‐related asthma: Targeting inflammation, oxidative stress, and the AMPK pathway. Immun. Inflamm. Dis. 2023 11 9 e1025 10.1002/iid3.1025 37773696
    [Google Scholar]
  81. Cui T. Lan Y. Yu F. Lin S. Qiu J. Plumbagin alleviates temporomandibular joint osteoarthritis progression by inhibiting chondrocyte ferroptosis via the MAPK signaling pathways. Aging 2023 15 22 13452 13470 10.18632/aging.205253 38032278
    [Google Scholar]
  82. Zhang Q. Fu H. Gong W. Cao F. Wu T. Hu F. Plumbagin protects H9c2 cardiomyocytes against TBHP‑induced cytotoxicity by alleviating ROS‑induced apoptosis and modulating autophagy. Exp. Ther. Med. 2022 24 2 501 10.3892/etm.2022.11428 35837065
    [Google Scholar]
  83. Catalani E. Quondam D.S. Brunetti K. Cherubini A. Bongiorni S. Taddei A.R. Zecchini S. Giovarelli M. Palma D.C. Perrotta C. Clementi E. Prantera G. Cervia D. Neuroprotective role of plumbagin on eye damage induced by high-sucrose diet in adult fruit fly drosophila melanogaster. Biomed Pharmacother. 2023 166 115298 10.1016/j.biopha.2023.115298
    [Google Scholar]
  84. Qian W. Wang W. Zhang J. Fu Y. Liu Q. Li X. Wang T. Zhang Q. Exploitation of the antifungal and antibiofilm activities of plumbagin against Cryptococcus neoformans. Biofouling 2022 38 6 558 574 10.1080/08927014.2022.2094260 35818738
    [Google Scholar]
  85. Cong F. Gu L. Lin J. Liu G. Wang Q. Zhang L. Chi M. Xu Q. Zhao G. Li C. Plumbagin inhibits fungal growth, HMGB1/LOX-1 pathway and inflammatory factors in A. fumigatus keratitis. Front. Microbiol. 2024 15 1383509 10.3389/fmicb.2024.1383509 38655086
    [Google Scholar]
  86. Alfhili M.A. Ahmad I. Alraey Y. Alangari A. Alqahtani T. Dera A.A. Antibacterial and anti-biofilm activity of plumbagin against multi-drug resistant clinical bacterial isolates. Saudi Med. J. 2022 43 11 1224 1233 10.15537/smj.2022.43.11.20220446 36379534
    [Google Scholar]
  87. Bie S. Mo Q. Shi C. Yuan H. Li C. Wu T. Li W. Yu H. Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro. PLoS One 2024 19 1 e0297493 10.1371/journal.pone.0297493 38277418
    [Google Scholar]
  88. Peres R.B. Batista M.M. Bérenger A.L.R. Camillo F.C. Figueiredo M.R. Soeiro M.N.C. Antiparasitic activity of Plumbago auriculata extracts and its naphthoquinone plumbagin against Trypanosoma cruzi. Pharmaceutics 2023 15 5 1535 10.3390/pharmaceutics15051535 37242777
    [Google Scholar]
  89. Ahmad I. Tabrez S. Exploring natural resources: Plumbagin as a potent anticancer agent. S. Afr. J. Bot. 2024 174 167 179 10.1016/j.sajb.2024.08.037
    [Google Scholar]
  90. Vijayan S. Loganathan C. Sakayanathan P. Thayumanavan P. Synthesis and characterization of plumbagin S-Allyl cysteine ESTER: Determination of anticancer activity in silico and in vitro. Appl. Biochem. Biotechnol. 2022 194 12 5827 5847 10.1007/s12010‑022‑04079‑0 35819687
    [Google Scholar]
  91. Md S. Alhakamy N.A. Aldawsari H.M. Husain M. Khan N. Alfaleh M.A. Asfour H.Z. Riadi Y. Bilgrami A.L. Akhter M.H. Plumbagin-loaded glycerosome gel as topical delivery system for skin cancer therapy. Polymers 2021 13 6 923 10.3390/polym13060923 33802819
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345583241226093530
Loading
/content/journals/cmc/10.2174/0109298673345583241226093530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test