Skip to content
2000
image of Integrated Single-cell RNA-seq and Bulk RNA-seq Identify Diagnostic Biomarkers for Postmenopausal Osteoporosis

Abstract

Aim

We aimed to explore diagnostic biomarkers of postmenopausal osteoporosis (PMOP).

Background

PMOP brings enormous physical and economic burden to elderly women.

Objectives

This study aims to screen new biomarkers for osteoporosis, providing insights for early diagnosis and therapeutic targets of osteoporosis.

Methods

Weighted gene co-expression network analysis (WGCNA) was applied to identify osteoporosis-related hub genes. Single-cell transcriptomic atlas of osteoporosis was depicted and the heterogeneity of monocytes was analyzed, based on which the biomarkers for osteoporosis were screened. Gene set enrichment analysis (GSEA) was conducted on the biomarkers. The diagnostic model (nomogram) was established and evaluated based on the expression levels of biomarkers. Additionally, the transcription factor (TF) regulatory network was constructed to predict the potential TF and targeted miRNA of biomarkers. The drugs with significant correlation with biomarkers were identified by Spearman correlation analysis.

Results

We obtained 30 osteoporosis-associated hub genes. 9 cell types were identified, and the monocytes were subdivided to 4 subtypes. Three biomarkers, , , and , were screened. and were highly expressed in non-classical monocytes, while exhibited the highest expression in other monocytes, followed by non-classical monocytes. GSEA indicated that osteoporosis may be correlated with vascular calcification and the biomarkers may be involved in the formation of immune cells. Then, nomogram was constructed and exhibited good robustness. In addition, MYC and SETDB1 were the shared IF in three biomarkers, which may play critical regulatory roles in the progression of osteoporosis. Moreover, 41, 49, and 68 drugs appeared significant correlations with , , and , respectively.

Conclusion

This study provided a basis for early diagnosis and targeted treatment of osteoporosis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673343344240930054414
2024-10-03
2024-11-26
Loading full text...

Full text loading...

References

  1. Chen P. Li Z. Hu Y. Prevalence of osteoporosis in China: A meta-analysis and systematic review. BMC Public Health 2016 16 1 1039 10.1186/s12889‑016‑3712‑7 27716144
    [Google Scholar]
  2. Kling J.M. Clarke B.L. Sandhu N.P. Osteoporosis prevention, screening, and treatment: A review. J. Womens Health (Larchmt.) 2014 23 7 563 572 10.1089/jwh.2013.4611 24766381
    [Google Scholar]
  3. Lai B. Jiang H. Gao Y. Zhou X. Identification of ROCK1 as a novel biomarker for postmenopausal osteoporosis and pan-cancer analysis. Aging (Albany NY) 2023 15 17 8873 8907 10.18632/aging.205004 37683138
    [Google Scholar]
  4. Link T.M. Osteoporosis imaging: State of the art and advanced imaging. Radiology 2012 263 1 3 17 10.1148/radiol.12110462 22438439
    [Google Scholar]
  5. Anderst W.J. West T. Donaldson W.F. III Lee J.Y. Cervical spine bone density in young healthy adults as a function of sex, vertebral level and anatomic location. Eur. Spine J. 2017 26 9 2281 2289 10.1007/s00586‑017‑5119‑2 28478522
    [Google Scholar]
  6. Tsai J.N. Uihlein A.V. Lee H. Kumbhani R. Siwila-Sackman E. McKay E.A. Burnett-Bowie S.A.M. Neer R.M. Leder B.Z. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: The DATA study randomised trial. Lancet 2013 382 9886 50 56 10.1016/S0140‑6736(13)60856‑9 23683600
    [Google Scholar]
  7. Kennel K.A. Drake M.T. Adverse effects of bisphosphonates: Implications for osteoporosis management. Mayo Clin. Proc. 2009 84 7 632 638 10.1016/S0025‑6196(11)60752‑0 19567717
    [Google Scholar]
  8. Zhang Z. Zhang T. Zhou L. Guan J. Identification of Diagnostic Genes and Effective Drugs Associated with Osteoporosis Treatment by Single-Cell RNA-Seq Analysis and Network Pharmacology. Mediators Inflamm. 2022 2022 1 10 10.1155/2022/6830635 36199280
    [Google Scholar]
  9. Hu G. Cheng Z. Wu Z. Wang H. Identification of potential key genes associated with osteosarcoma based on integrated bioinformatics analyses. J. Cell. Biochem. 2019 120 8 13554 13561 10.1002/jcb.28630 30920023
    [Google Scholar]
  10. Wang Y. Mashock M. Tong Z. Mu X. Chen H. Zhou X. Zhang H. Zhao G. Liu B. Li X. Changing technologies of RNA sequencing and their applications in clinical oncology. Front. Oncol. 2020 10 447 10.3389/fonc.2020.00447 32328458
    [Google Scholar]
  11. Papatheodorou I. Moreno P. Manning J. Fuentes A.M.P. George N. Fexova S. Fonseca N.A. Füllgrabe A. Green M. Huang N. Huerta L. Iqbal H. Jianu M. Mohammed S. Zhao L. Jarnuczak A.F. Jupp S. Marioni J. Meyer K. Petryszak R. Prada Medina C.A. Talavera-López C. Teichmann S. Vizcaino J.A. Brazma A. Expression Atlas update: From tissues to single cells. Nucleic Acids Res. 2019 48 D1 gkz947 10.1093/nar/gkz947 31665515
    [Google Scholar]
  12. Huang R. Wang X. Yin X. Zhou Y. Sun J. Yin Z. Zhu Z. Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma. Front. Genet. 2022 13 976990 10.3389/fgene.2022.976990 36338972
    [Google Scholar]
  13. Seyfinejad B. Jouyban A. Importance of method validation in the analysis of biomarker. Curr. Pharm. Anal. 2022 18 6 567 569 10.2174/1573412918666211213142638
    [Google Scholar]
  14. Zhang C. Luo G. Lin J. Zhao Z. Luo M. Li H. Identification of significant modules and hub genes involved in hepatic encephalopathy using WGCNA. Eur. J. Med. Res. 2022 27 1 264 10.1186/s40001‑022‑00898‑3 36424620
    [Google Scholar]
  15. Zulibiya A. Wen J. Yu H. Chen X. Xu L. Ma X. Zhang B. Single-cell RNA sequencing reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot. Congenit. Heart Dis. 2023 18 6 611 625 10.32604/chd.2023.047689
    [Google Scholar]
  16. Mu Y. Zheng D. Peng Q. Wang X. Zhang Y. Yin Y. Wang E. Ye F. Wang J. Integration of single‐cell and bulk RNA ‐sequencing to analyze the heterogeneity of hepatocellular carcinoma and establish a prognostic model. Cancer Rep. 2024 7 1 e1935 10.1002/cnr2.1935 37994394
    [Google Scholar]
  17. Ji J. Wu S. Bao X. Liu S. Ye Y. Liu J. Guo J. Liu J. Wang X. Xia Z. Wei L. Zhang Y. Hao D. Huang D. Mediating oxidative stress through the Palbociclib/miR-141-3p/STAT4 axis in osteoporosis: A bioinformatics and experimental validation study. Sci. Rep. 2023 13 1 19560 10.1038/s41598‑023‑46813‑6 37949959
    [Google Scholar]
  18. Wang X. Wang H. Yu S. Wang X. Diagnosis model of paraquat poisoning based on machine learning. Curr. Pharm. Anal. 2022 18 2 176 181 10.2174/1573412917666210302150150
    [Google Scholar]
  19. Zhu H. Lin Q. Gao X. Huang X. Identification of the hub genes associated with prostate cancer tumorigenesis. Front. Oncol. 2023 13 1168772 10.3389/fonc.2023.1168772 37251946
    [Google Scholar]
  20. Li Y. Tang H. Huang Z. Qin H. Cen Q. Meng F. Huang L. Lin L. Pu J. Yang D. Bioinformatics analysis and identification of genes and pathways involved in patients with Wilms tumor. Transl. Cancer Res. 2022 11 8 2843 2857 10.21037/tcr‑22‑1847 36093523
    [Google Scholar]
  21. Qiao W. Li J. Xiong Y. Zheng J. Jin R. Hu C. GALAD score as a prognostic model for recurrence of hepatocellular carcinoma after local ablation. J. Cancer Res. Clin. Oncol. 2024 150 5 241 10.1007/s00432‑024‑05760‑z 38713414
    [Google Scholar]
  22. Chen Y. Huang L. Wei Z. Liu X. Chen L. Wang B. Development and validation of a nomogram model to predict the prognosis of intrahepatic cholangiocarcinoma. Res. Squ. 2022
    [Google Scholar]
  23. Sun Y. Wang L. Du L. Yu H. Tian Y. Jin H. Li S. Yan S. Xiao X. Investigation on the mechanism of Ginkgo Folium in the treatment of Non-alcoholic Fatty Liver Disease by strategy of network pharmacology and molecular docking. Technol. Health Care 2023 31 S1 209 221 10.3233/THC‑236018 37038793
    [Google Scholar]
  24. Maeser D. Gruener R.F. Huang R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  25. Lv Y. Hu J. Zheng W. Shan L. Bai B. Zhu H. Dai S. A WGCNA-based cancer-associated fibroblast risk signature in colorectal cancer for prognosis and immunotherapy response. Transl. Cancer Res. 2023 12 9 2256 2275 10.21037/tcr‑23‑261 37859738
    [Google Scholar]
  26. Su Y.J. Chen C.T. Tsai N.W. Huang C.C. Wang H.C. Kung C.T. Lin W.C. Cheng B.C. Su C.M. Hsiao S.Y. Lu C.H. The role of monocyte percentage in osteoporosis in male rheumatic diseases. Am. J. Men Health 2017 11 6 1772 1780 10.1177/1557988317721642 28901203
    [Google Scholar]
  27. Dhote V. Sweeney T.R. Kim N. Hellen C.U.T. Pestova T.V. Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. Proc. Natl. Acad. Sci. USA 2012 109 46 E3150 E3159 10.1073/pnas.1208014109 23047696
    [Google Scholar]
  28. Dai L. Tan Q. Li L. Lou N. Zheng C. Yang J. Huang L. Wang S. Luo R. Fan G. Xie T. Yao J. Zhang Z. Tang L. Shi Y. Han X. High-throughput antigen microarray identifies longitudinal prognostic autoantibody for chemoimmunotherapy in advanced non-small cell lung cancer. Mol. Cell. Proteomics 2024 23 5 100749 10.1016/j.mcpro.2024.100749 38513890
    [Google Scholar]
  29. Zhu Q. Tan P. Li Y. Lin M. Li C. Mao J. Cui J. Zhao W. Wang H.Y. Wang R.F. DHX29 functions as an RNA co-sensor for MDA5-mediated EMCV-specific antiviral immunity. PLoS Pathog. 2018 14 2 e1006886 10.1371/journal.ppat.1006886 29462185
    [Google Scholar]
  30. Zhou H. Gul Y. Hameed Y. Alhomrani M. Alghamdi S.A. Almalki A.A. Alsuwat M.A. ALSuhaymi N. Naz R. Chen G. Unveiling the unexplored novel signatures for osteoporosis via a detailed bioinformatics and molecular experiments based approach. Am. J. Transl. Res. 2024 16 4 1306 1321 10.62347/TAYD3318 38715824
    [Google Scholar]
  31. Perez-Santángelo S. Mancini E. Francey L.J. Schlaen R.G. Chernomoretz A. Hogenesch J.B. Yanovsky M.J. Role for LSM genes in the regulation of circadian rhythms. Proc. Natl. Acad. Sci. USA 2014 111 42 15166 15171 10.1073/pnas.1409791111 25288739
    [Google Scholar]
  32. Huang M. Atreya M.R. Holder A. Kamaleswaran R. A machine learning model derived from analysis of time-course gene-expression datasets reveals temporally stable gene markers predictive of sepsis mortality. Shock 2023 60 5 671 677 10.1097/SHK.0000000000002226 37752077
    [Google Scholar]
  33. Kryczka J. Boncela J. Integrated bioinformatics analysis of the hub genes involved in irinotecan resistance in colorectal cancer. Biomedicines 2022 10 7 1720 10.3390/biomedicines10071720 35885025
    [Google Scholar]
  34. Liu Q. Lian Q. Song Y. Yang S. Jia C. Fang J. Identification of LSM family members as potential chemoresistance predictive and therapeutic biomarkers for gastric cancer. Front. Oncol. 2023 13 1119945 10.3389/fonc.2023.1119945 37007092
    [Google Scholar]
  35. Zhuang H. Chen B. Tang C. Chen X. Tan W. Yang L. Xie Z. Ma X. Wang Q. Zhang C. Shang C. Chen Y. Identification of LSM Family Members as Novel Unfavorable Biomarkers in Hepatocellular Carcinoma. Front. Oncol. 2022 12 871771 10.3389/fonc.2022.871771 35646684
    [Google Scholar]
  36. Zhao Y. Long M.J.C. Wang Y. Zhang S. Aye Y. Ube2V2 is a rosetta stone bridging redox and ubiquitin codes, coordinating dna damage responses. ACS Cent. Sci. 2018 4 2 246 259 10.1021/acscentsci.7b00556 29532025
    [Google Scholar]
  37. Li S. Chen B. Chen H. Hua Z. Shao Y. Yin H. Wang J. Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning. PLoS One 2021 16 9 e0257343 10.1371/journal.pone.0257343 34555052
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673343344240930054414
Loading
/content/journals/cmc/10.2174/0109298673343344240930054414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test