Skip to content
2000
image of Implementation of an Automated System Using Machine Learning Models to Accelerate the Process of In Silico Identification of Small Molecules As Drug Candidates

Abstract

Drugs are commonly utilized to diagnose, cure, or prevent the occurrence of diseases, as well as to restore, alter, or change organic functions. Drug discovery is a time-consuming, costly, difficult, and inefficient process that yields very few medicinal breakthroughs. Drug research and design involves the capturing of structural information for biological targets and small molecules as well as various methods, such as molecular docking and molecular dynamic simulation. This article proposes the idea of expediting computational drug development through a collaboration of scientists and universities, similar to the Human Genome Project using machine learning (ML) strategies. We envision an automated system where readily available or novel small molecules (chemical or plant-derived), as well as their biological targets, are uploaded to an online database, which is constantly updated. For this system to function, machine learning strategies have to be implemented, and high-quality datasets and high quality assurance of the ML models will be required. ML can be applied to all computational drug discovery fields, including hit discovery, target validation, lead optimization, drug repurposing, and data mining of small compounds and biomolecule structures. Researchers from various disciplines, such as bioengineers, bioinformaticians, geneticists, chemists, computer and software engineers, and pharmacists, are expected to collaborate to establish a solid workflow and certain parameters as well as constraints for a successful outcome. This automated system may help speed up the drug discovery process while also lowering the number of unsuccessful drug candidates. Additionally, this system will decrease the workload, especially in computational studies, and expedite the process of drug design. As a result, a drug may be manufactured in a relatively short time.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673334173241003060139
2024-10-10
2024-11-26
Loading full text...

Full text loading...

References

  1. Zhou S.F. Zhong W.Z. Drug design and discovery: Principles and applications. Molecules 2017 22 2 279 10.3390/molecules22020279.
    [Google Scholar]
  2. Southey M.W.Y. Brunavs M. Introduction to small molecule drug discovery and preclinical development. Front. Drug Discov. (Lausanne) 2023 3 1314077 10.3389/fddsv.2023.1314077
    [Google Scholar]
  3. Makurvet F.D. Biologics vs . small molecules: Drug costs and patient access. Med. Drug Discov. 2021 9 100075 10.1016/j.medidd.2020.100075
    [Google Scholar]
  4. Beck H. Härter M. Haß B. Schmeck C. Baerfacker L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory. Drug Discov. Today 2022 27 6 1560 1574 10.1016/j.drudis.2022.02.015 35202802
    [Google Scholar]
  5. Hou D. Lin H. Feng Y. Zhou K. Li X. Yang Y. Wang S. Yang X. Wang J. Zhao H. Zhang X. Fan J. Lu S. Wang D. Zhu L. Ju D. Chen Y.Z. Zeng X. CMAUP database update 2024: Extended functional and association information of useful plants for biomedical research. Nucleic Acids Res. 2024 52 D1 D1508 D1518 10.1093/nar/gkad921 37897343
    [Google Scholar]
  6. Sorokina M. Merseburger P. Rajan K. Yirik M.A. Steinbeck C. COCONUT online: Collection of open natural products database. J. Cheminform. 2021 13 1 2 10.1186/s13321‑020‑00478‑9 33423696
    [Google Scholar]
  7. Sabe V.T. Ntombela T. Jhamba L.A. Maguire G.E.M. Govender T. Naicker T. Kruger H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021 224 113705 10.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  8. Zloh M. Kirton S.B. The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions. Future Med. Chem. 2018 10 4 423 432 10.4155/fmc‑2017‑0151 29380627
    [Google Scholar]
  9. Muhammed M.T. Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des. 2019 93 1 12 20 10.1111/cbdd.13388 30187647
    [Google Scholar]
  10. Giordano D. Biancaniello C. Argenio M.A. Facchiano A. Drug design by pharmacophore and virtual screening approach. Pharmaceuticals (Basel) 2022 15 5 646 10.3390/ph15050646 35631472
    [Google Scholar]
  11. Stanzione F. Giangreco I. Cole J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem. 2021 60 273 343 10.1016/bs.pmch.2021.01.004 34147204
    [Google Scholar]
  12. Agu P.C. Afiukwa C.A. Orji O.U. Ezeh E.M. Ofoke I.H. Ogbu C.O. Ugwuja E.I. Aja P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023 13 1 13398 10.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  13. Hollingsworth S.A. Dror R.O. Molecular dynamics simulation for all. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  14. Páll S. Zhmurov A. Bauer P. Abraham M. Lundborg M. Gray A. Hess B. Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020 153 13 134110 10.1063/5.0018516 33032406
    [Google Scholar]
  15. Thompson A.P. Aktulga H.M. Berger R. Bolintineanu D.S. Brown W.M. Crozier P.S. in ’t Veld P.J. Kohlmeyer A. Moore S.G. Nguyen T.D. Shan R. Stevens M.J. Tranchida J. Trott C. Plimpton S.J. LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022 271 108171 10.1016/j.cpc.2021.108171
    [Google Scholar]
  16. Phillips J.C. Hardy D.J. Maia J.D.C. Stone J.E. Ribeiro J.V. Bernardi R.C. Buch R. Fiorin G. Hénin J. Jiang W. McGreevy R. Melo M.C.R. Radak B.K. Skeel R.D. Singharoy A. Wang Y. Roux B. Aksimentiev A. Luthey-Schulten Z. Kalé L.V. Schulten K. Chipot C. Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020 153 4 044130 10.1063/5.0014475 32752662
    [Google Scholar]
  17. Case D.A. Cheatham T.E. III Darden T. Gohlke H. Luo R. Merz K.M. Jr Onufriev A. Simmerling C. Wang B. Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005 26 16 1668 1688 10.1002/jcc.20290 16200636
    [Google Scholar]
  18. Case D.A. Aktulga H.M. Belfon K. Cerutti D.S. Cisneros G.A. Cruzeiro V.W.D. Forouzesh N. Giese T.J. Götz A.W. Gohlke H. Izadi S. Kasavajhala K. Kaymak M.C. King E. Kurtzman T. Lee T.S. Li P. Liu J. Luchko T. Luo R. Manathunga M. Machado M.R. Nguyen H.M. O’Hearn K.A. Onufriev A.V. Pan F. Pantano S. Qi R. Rahnamoun A. Risheh A. Schott-Verdugo S. Shajan A. Swails J. Wang J. Wei H. Wu X. Wu Y. Zhang S. Zhao S. Zhu Q. Cheatham T.E. III Roe D.R. Roitberg A. Simmerling C. York D.M. Nagan M.C. Merz K.M. Jr AmberTools. J. Chem. Inf. Model. 2023 63 20 6183 6191 10.1021/acs.jcim.3c01153 37805934
    [Google Scholar]
  19. Dara S. Dhamercherla S. Jadav S.S. Babu C.H.M. Ahsan M.J. Machine learning in drug discovery: A review. Artif. Intell. Rev. 2022 55 3 1947 1999 10.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  20. Aittokallio T. What are the current challenges for machine learning in drug discovery and repurposing? Expert Opin. Drug Discov. 2022 17 5 423 425 10.1080/17460441.2022.2050694 35255749
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673334173241003060139
Loading
/content/journals/cmc/10.2174/0109298673334173241003060139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test