Skip to content
2000
image of Integrated Exploration of Pyranocoumarin Derivatives as Synergistic Inhibitors of Dual-target for Mpro and PLpro Proteins of SARS-CoV-2 through Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation

Abstract

Aims

This study aimed to explore the potential of natural anticoagulant compounds as synergistic inhibitors of the main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2 and find effective therapies against SARS-CoV-2 by investigating the inhibitory effects of natural anticoagulant compounds on key viral proteases.

Objective

The objectives of this study were to conduct rigorous virtual screening and molecular docking analyses to evaluate the binding affinities and interactions of selected anticoagulant compounds with Mpro and PLpro, to assess the pharmacokinetic and pharmacodynamic profiles of the compounds to determine their viability for therapeutic use, and to employ molecular dynamics simulations to understand the stability of the identified compounds over time.

Method

In this study, a curated collection of natural anticoagulant compounds was conducted. Virtual screening and molecular docking analyses were performed to assess binding affinities and interactions with Mpro and PLpro. Furthermore, pharmacokinetic and pharmacodynamic analyses were carried out to evaluate absorption, distribution, metabolism, and excretion profiles. Molecular dynamics simulations were performed to elucidate compound stability.

Result

Natural compounds exhibiting significant inhibitory activity against Mpro and PLpro were identified. A dual-target approach was established as a promising strategy for attenuating viral replication and addressing coagulopathic complications associated with SARS-CoV-2 infection.

Conclusion

The study lays a solid foundation for experimental validation and optimization of identified compounds, potentially leading to the development of precise treatments for SARS-CoV-2.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331781240829094334
2024-10-03
2024-11-26
Loading full text...

Full text loading...

References

  1. Cui J. Li F. Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019 17 3 181 192 10.1038/s41579‑018‑0118‑9 30531947
    [Google Scholar]
  2. Mollica V. Rizzo A. Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020 16 27 2029 2033 10.2217/fon‑2020‑0571 32658591
    [Google Scholar]
  3. Rizzo A. Palmiotti G. SARS-CoV-2 Omicron variant in cancer patients: an insight into the vaccine booster debate. Future Oncol. 2022 18 11 1301 1302 10.2217/fon‑2022‑0024 35109688
    [Google Scholar]
  4. Su H. Zhou F. Huang Z. Ma X. Natarajan K. Zhang M. Huang Y. Su H. Molecular Insights into Small-Molecule Drug Discovery for SARS-CoV-2. Angew. Chem. Int. Ed. 2021 60 18 9789 9802 10.1002/anie.202008835 32729180
    [Google Scholar]
  5. Brant A.C. Tian W. Majerciak V. Yang W. Zheng Z.M. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci. 2021 11 1 136 10.1186/s13578‑021‑00643‑z 34281608
    [Google Scholar]
  6. Hu B. Guo H. Zhou P. Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021 19 3 141 154 10.1038/s41579‑020‑00459‑7 33024307
    [Google Scholar]
  7. Hu Q. Xiong Y. Zhu G.H. Zhang Y.N. Zhang Y.W. Huang P. Ge G.B. The SARS-CoV-2 main protease (M pro ): Structure, function, and emerging therapies for COVID-19. MedComm 2022 3 3 e151 10.1002/mco2.151 35845352
    [Google Scholar]
  8. Clementz M.A. Chen Z. Banach B.S. Wang Y. Sun L. Ratia K. Baez-Santos Y.M. Wang J. Takayama J. Ghosh A.K. Li K. Mesecar A.D. Baker S.C. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol. 2010 84 9 4619 4629 10.1128/JVI.02406‑09 20181693
    [Google Scholar]
  9. Yevsieieva L.V. Lohachova K.O. Kyrychenko A. Kovalenko S.M. Ivanov V.V. Kalugin O.N. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Advances 2023 13 50 35500 35524 10.1039/D3RA06479D 38077980
    [Google Scholar]
  10. Khazeei Tabari M.A. Iranpanah A. Bahramsoltani R. Rahimi R. Flavonoids as promising antiviral agents against SARS-CoV-2 Infection: A mechanistic review. Molecules 2021 26 13 3900 10.3390/molecules26133900 34202374
    [Google Scholar]
  11. Yamari I. Abchir O. Nour H. El Kouali M. Chtita S. Identification of new dihydrophenanthrene derivatives as promising antiSARS-CoV-2 drugs through in silico investigations. Main Group Chem. 2023 22 5 220127 10.3233/MGC‑220127
    [Google Scholar]
  12. Africa J.G. Arturo H.C. Bernardo L.J. Ching J.K.A. de la Cruz O.C. Hernandez J.B. Magsipoc R.J. Sales C.T. Agbay J.C. Neri G.L. Quimque M.T. Macabeo A.P. In silico triple targeting of SARS-CoV-2 3CLᵖʳᵒ, PLᵖʳᵒ, and RdRp by philippine antitubercular natural products libraries. Philipp. J. Sci. 2021 151 1 10.56899/151.01.04
    [Google Scholar]
  13. Islam M.T. Sarkar C. El-Kersh D.M. Jamaddar S. Uddin S.J. Shilpi J.A. Mubarak M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res. 2020 34 10 2471 2492 10.1002/ptr.6700 32248575
    [Google Scholar]
  14. Raman K. Rajagopal K. Islam F. Dhawan M. Mitra S. Aparna B. Varakumar P. Byran G. Choudhary O.P. Emran T.B. Role of natural products towards the SARS-CoV-2: A critical review. Ann. Med. Surg. 2022 80 104062 10.1016/j.amsu.2022.104062 35814035
    [Google Scholar]
  15. Xian Y. Zhang J. Bian Z. Zhou H. Zhang Z. Lin Z. Xu H. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm. Sin. B 2020 10 7 1163 1174 10.1016/j.apsb.2020.06.002 32834947
    [Google Scholar]
  16. Vlachou E.E.N. Litinas K.E. An overview on pyranocoumarins: Synthesis and biological activities. Curr. Org. Chem. 2020 23 24 2679 2721 10.2174/1385272823666191025151236
    [Google Scholar]
  17. Khandy M.T. Sofronova A.K. Gorpenchenko T.Y. Chirikova N.K. Plant pyranocoumarins: description, biosynthesis, application. Plants 2022 11 22 3135 10.3390/plants11223135 36432864
    [Google Scholar]
  18. Venugopala K.N. Rashmi V. Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int. 2013 2013 1 14 10.1155/2013/963248 23586066
    [Google Scholar]
  19. Hassan M.Z. Osman H. Ali M.A. Ahsan M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem. 2016 123 236 255 10.1016/j.ejmech.2016.07.056 27484512
    [Google Scholar]
  20. Kashman Y. Gustafson K.R. Fuller R.W. Cardellina J.H. II McMahon J.B. Currens M.J. Buckheit R.W. Hughes S.H. Cragg G.M. Boyd M.R. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem. 1992 35 15 2735 2743 10.1021/jm00093a004 1379639
    [Google Scholar]
  21. Min S.J. Lee H. Shin M.S. Lee J.W. Synthesis and biological properties of pyranocoumarin derivatives as potent anti-inflammatory agents. Int. J. Mol. Sci. 2023 24 12 10026 10.3390/ijms241210026 37373174
    [Google Scholar]
  22. Stefanachi A. Leonetti F. Pisani L. Catto M. Carotti A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018 23 2 250 10.3390/molecules23020250 29382051
    [Google Scholar]
  23. M J. Joy F. Nizam A. Naidu Krishna S.B. Multicomponent synthesis strategies, catalytic activities, and potential therapeutic applications of pyranocoumarins: A comprehensive review. Chem. Biodivers. 2023 20 10 e202300836 10.1002/cbdv.202300836
    [Google Scholar]
  24. Xiang X. Feng X. Lu S. Jiang B. Hao D. Pei Q. Xie Z. Jing X. Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration 2022 2 4 20220008 10.1002/EXP.20220008 37325605
    [Google Scholar]
  25. Truong P.L. Yin Y. Lee D. Ko S.H. Advancement in COVID-19 detection using nanomaterial-based biosensors. Exploration 2023 3 1 20210232 10.1002/EXP.20210232 37323622
    [Google Scholar]
  26. PerkinElmer ChemOffice Professional PerkinElmer ChemOffice Professional 16.0. 2011 Available from:https://perkinelmer-chemoffice-professional.software.informer.com/16.0/(accessed on 19-8-2024)
  27. Avogadro: an open-source molecular builder and visualization tool. 2022 Available from: https://avogadro.cc/(accessed on 19-8-2024)
  28. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  29. Swiss-PdbViewer Available from:https://spdbv.unil.ch/(accessed on 19-8-2024)
  30. Morris G.M. Huey R. Olson A.J. Using AutoDock for ligand-receptor docking. Curr. Protoc. Bioinformatics 2008 24 1 14 10.1002/0471250953.bi0814s24 19085980
    [Google Scholar]
  31. PyMOL by Schrödinger. Available from:https://pymol.org/2/(accessed on 19-8-2024)
  32. B. discovery Studio, Dassault systéme. Discovery Studio. Biovia, Software. 2021 Available from: https://discover.3ds.com/discovery-studio-visualizer-download(accessed on 15-8-2024)
  33. Winiwarter S. Ahlberg E. Watson E. Oprisiu I. Mogemark M. Noeske T. Greene N. In silico ADME in drug design – enhancing the impact. ADMET DMPK 2018 6 1 15 10.5599/admet.6.1.470
    [Google Scholar]
  34. Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  35. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  36. Schrödinger 2021 Available from:https://doi.org/software(accessed on 19-8-2024)
  37. Roos K. Wu C. Damm W. Reboul M. Stevenson J.M. Lu C. Dahlgren M.K. Mondal S. Chen W. Wang L. Abel R. Friesner R.A. Harder E.D. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput. 2019 15 3 1863 1874 10.1021/acs.jctc.8b01026 30768902
    [Google Scholar]
  38. Mark P. Nilsson L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001 105 43 9954 9960 10.1021/jp003020w
    [Google Scholar]
  39. Ke Q. Gong X. Liao S. Duan C. Li L. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022 365 120116 10.1016/j.molliq.2022.120116
    [Google Scholar]
  40. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  41. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  42. Egan W.J. Merz K.M. Jr. Baldwin J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000 43 21 3867 3877 10.1021/jm000292e 11052792
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331781240829094334
Loading
/content/journals/cmc/10.2174/0109298673331781240829094334
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: ADMET ; Protease ; dynamics simulation ; molecular docking ; papain-like protease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test