Skip to content
2000
image of Ononin’s Antagonistic Activity towards TRPV1: Insights from Molecular Dynamics and Capsaicin-Evoked Calcium Response in DRG Neurons

Abstract

Background

The search for effective painkillers has led to intensive research, with a particular focus on the transient receptor potential vanilloid-1 (TRPV1) channel as a possible target.

Methods

One promising candidate is ononin, which is investigated for its binding with TRPV1 through a 200-ns molecular dynamic simulation and analysed root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen-bond interactions, radius of gyration (RadGyr), and MM-PBSA energy calculations. The results were further validated experimentally calcium imaging studies.

Results

Molecular dynamics revealed that the ononin-TRPV1 complex achieved stable binding within a remarkably short time of approximately 38 ns while maintaining the degree of compactness of the receptor throughout a 200 ns simulation period. In contrast, the capsazepine-TRPV1 complex displayed more significant structural deviations during the whole simulation. Moreover, MM-PBSA energy calculations showed a relatively strong binding affinity between ononin and TRPV1, mainly attributed to favourable hydrophobic interactions. Pre-incubation of dorsal root ganglia (DRG) neurons with ononin (1 and 10 µM) or capsazepine (10 µM) for 4 min prior to stimulation with capsaicin significantly reduced capsaicin-evoked calcium responses. No significant difference between capsazepine and ononin was found at a concentration of 10 µM.

Conclusion

Overall, this research demonstrates the potential of ononin as a potential antagonist for developing analgesics targeting TRPV1. Hence, and to our best knowledge, this study represents the first report of ononin’s antagonistic activity towards TRPV1.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331246241023095720
2024-01-23
2025-06-01
Loading full text...

Full text loading...

References

  1. Virgen C.G. Kelkar N. Tran A. Rosa C.M. Cruz-Topete D. Amatya S. Cornett E.M. Urits I. Viswanath O. Kaye A.D. Pharmacological management of cancer pain: Novel therapeutics. Biomed. Pharmacother. 2022 156 113871 10.1016/j.biopha.2022.113871 36272265
    [Google Scholar]
  2. Blendon R.J. Benson J.M. The Public and the Opioid-Abuse Epidemic. N. Engl. J. Med. 2018 378 5 407 411 10.1056/NEJMp1714529 29298128
    [Google Scholar]
  3. Kissin I. The development of new analgesics over the past 50 years: A lack of real breakthrough drugs. Anesth. Analg. 2010 110 3 780 789 10.1213/ANE.0b013e3181cde882 20185657
    [Google Scholar]
  4. Abbas M.A. Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem. Biol. Interact. 2020 330 109178 10.1016/j.cbi.2020.109178 32738201
    [Google Scholar]
  5. Nishio N. Taniguchi W. Sugimura Y.K. Takiguchi N. Yamanaka M. Kiyoyuki Y. Yamada H. Miyazaki N. Yoshida M. Nakatsuka T. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience 2013 247 201 212 10.1016/j.neuroscience.2013.05.023 23707800
    [Google Scholar]
  6. Garami A. Shimansky Y.P. Rumbus Z. Vizin R.C.L. Farkas N. Hegyi J. Szakacs Z. Solymar M. Csenkey A. Chiche D.A. Kapil R. Kyle D.J. Van Horn W.D. Hegyi P. Romanovsky A.A. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol. Ther. 2020 208 107474 10.1016/j.pharmthera.2020.107474 31926897
    [Google Scholar]
  7. Moiseenkova-Bell V.Y. Stanciu L.A. Serysheva I.I. Tobe B.J. Wensel T.G. Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 2008 105 21 7451 7455 10.1073/pnas.0711835105 18490661
    [Google Scholar]
  8. Abdalla S.S. Harb A.A. Almasri I.M. Bustanji Y.K. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol. 2022 13 1066023 10.1016/j.ceca.2019.102057
    [Google Scholar]
  9. Shalan N. Khaleel A. Al-Samydai A. The role of capsaicin and transient receptor potential vanilloid 1 gene activation in preventing kidney stone: A comprehensive review. Trop. J. Pharm. Res. 2024 23 6 1031 1037 10.4314/tjpr.v23i6.14
    [Google Scholar]
  10. Osman S. Fett W. Isoflavone glucoside stress metabolites of soybean leaves. Phytochemistry 1983 22 9 1921 1923 10.1016/0031‑9422(83)80013‑2
    [Google Scholar]
  11. Benedec D. Vlase L. Oniga I. Toiu A. Tamas M. Tiperciuc B. Isoflavonoids from Glycyrrhiza sp. and Ononis spinosa . Farmacia 2012 60 5 615 620
    [Google Scholar]
  12. Konar N. Aygunes D. Artik N. Erman M. Coksari G. Poyrazoglu E.S. Determination of Phytoestrogenic Compounds of Chickpea (Cicer arientinum L.) By Acid Hydrolysis and LC-MS/MS. International Conference on Food, Agriculture and Biology (FAB-2014) June 11-12, 2014 Kuala Lumpur (Malaysia) 2014
    [Google Scholar]
  13. Vijayalakshmi A. Madhira G. Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photodermatitis model. Rev. Bras. Farmacogn. 2014 24 3 322 329 10.1016/j.bjp.2014.07.010
    [Google Scholar]
  14. Chang X. Chen X. Guo Y. Gong P. Pei S. Wang D. Wang P. Wang M. Chen F. Advances in Chemical Composition, Extraction Techniques, Analytical Methods, and Biological Activity of Astragali Radix. Molecules 2022 27 3 1058 10.3390/molecules27031058 35164321
    [Google Scholar]
  15. Cao J. Li T. Liu T. Zheng Y. Liu J. Yang Q. Li X. Lu W. Wei Y. Li W. A Study of the Mechanisms and Characteristics of Fluorescence Enhancement for the Detection of Formononetin and Ononin. Molecules 2023 28 4 1543 10.3390/molecules28041543 36838530
    [Google Scholar]
  16. Mladenova S.G. Savova M.S. Marchev A.S. Ferrante C. Orlando G. Wabitsch M. Georgiev M.I. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARγ in human adipocytes. Biomed. Pharmacother. 2022 149 112908 10.1016/j.biopha.2022.112908 35367764
    [Google Scholar]
  17. Chen X. Zhang M. Ahmed M. Surapaneni K.M. Veeraraghavan V.P. Arulselvan P. Neuroprotective effects of ononin against the aluminium chloride-induced Alzheimer’s disease in rats. Saudi J. Biol. Sci. 2021 28 8 4232 4239 10.1016/j.sjbs.2021.06.031 34354404
    [Google Scholar]
  18. Lee W. Choo S. Sim H. Bae J.S. Inhibitory Activities of Ononin on Particulate Matter-induced Oxidative Stress. Biotechnol. Bioprocess Eng.; BBE 2021 26 2 208 215 10.1007/s12257‑020‑0294‑0
    [Google Scholar]
  19. Yu D.H. Bao Y.M. an L.J. Yang M. Protection of PC12 cells against superoxide-induced damage by isoflavonoids from Astragalus mongholicus . Biomed. Environ. Sci. 2009 22 1 50 54 10.1016/S0895‑3988(09)60022‑2 19462688
    [Google Scholar]
  20. Gong G. Ganesan K. Xiong Q. Zheng Y. Antitumor Effects of Ononin by Modulation of Apoptosis in Non-Small-Cell Lung Cancer through Inhibiting PI3K/Akt/mTOR Pathway. Oxid. Med. Cell. Longev. 2022 2022 1 17 10.1155/2022/5122448 36605098
    [Google Scholar]
  21. Gong G. Ganesan K. Xiong Q. Zheng Y. Anti-Invasive and Anti-Migratory Effects of Ononin on Human Osteosarcoma Cells by Limiting the MMP2/9 and EGFR-Erk1/2 Pathway. Cancers (Basel) 2023 15 3 758 10.3390/cancers15030758 36765716
    [Google Scholar]
  22. Ye B. Ma J. Li Z. Li Y. Han X. Ononin Shows Anticancer Activity Against Laryngeal Cancer via the Inhibition of ERK/JNK/p38 Signaling Pathway. Front. Oncol. 2022 12 939646 10.3389/fonc.2022.939646 35912256
    [Google Scholar]
  23. Zuo F. Anti-breast Cancer Effect of Ononin and Its Mechanism in Vitro . Chin. Pharm. Sci. 2020 24 194 198
    [Google Scholar]
  24. Gong G. Zheng Y. Kong X. Wen Z. Anti-angiogenesis Function of Ononin via Suppressing the MEK/Erk Signaling Pathway. J. Nat. Prod. 2021 84 6 1755 1762 10.1021/acs.jnatprod.1c00008 34029083
    [Google Scholar]
  25. Meng Y. Ji J. Xiao X. Li M. Niu S. He Y. Tong G. Pan C. Ononin induces cell apoptosis and reduces inflammation in rheumatoid arthritis fibroblast-like synoviocytes by alleviating MAPK and NF-κB signaling pathways. Acta Biochim. Pol. 2021 68 2 239 245 10.18388/abp.2020_5528 34075738
    [Google Scholar]
  26. Xu F. Zhao L.J. Liao T. Li Z.C. Wang L.L. Lin P.Y. Jiang R. Wei Q.J. Ononin ameliorates inflammation and cartilage degradation in rat chondrocytes with IL-1β-induced osteoarthritis by downregulating the MAPK and NF-κB pathways. BMC Complement. Med. Ther. 2022 22 1 25 10.1186/s12906‑022‑03504‑5 35086536
    [Google Scholar]
  27. Dong L. Yin L. Zhang Y. Fu X. Lu J. Anti-inflammatory effects of ononin on lipopolysaccharide-stimulated RAW 264.7 cells. Mol. Immunol. 2017 83 46 51 10.1016/j.molimm.2017.01.007 28095349
    [Google Scholar]
  28. Yu T. Lu X. Liang Y. Yang L. Yin Y. Chen H. Ononin alleviates DSS-induced colitis through inhibiting NLRP3 inflammasome via triggering mitophagy. Immun. Inflamm. Dis. 2023 11 2 e776 10.1002/iid3.776 36840499
    [Google Scholar]
  29. Yan W. Huang J. Gao Y. Zhang J. Lei L. Ma J. Ma Z. Ononin inhibits cerebral ischemia/reperfusion injury via suppression of inflammatory responses in experimental rats and SH-SY5Y cells. Appl. Nanosci. 2022 12 1 109 118 10.1007/s13204‑021‑02184‑w
    [Google Scholar]
  30. Dong L. Yu L. Liu A. Alahmadi T.A. Almoallim H.S. Durairaj K. Ononin mitigates streptozotocin-induced diabetic nephropathy in rats via alleviating oxidative stress and inflammatory markers. J. King Saud Univ. Sci. 2022 34 6 102029 10.1016/j.jksus.2022.102029
    [Google Scholar]
  31. Abbas M.A. Jaffal S.M. Antinociceptive Action of Ononis spinosa Leaf Extract in Mouse Pain Models. Acta Pol. Pharm. -. Drug Res. 2019 76 2 299 304
    [Google Scholar]
  32. Yõlmaz B.S. Özbek H. Çitoğlu G.S. Uğraş S. Bayram İ. Erdoğan E. Analgesic and hepatotoxic effects of Ononis spinosa L. Phytother. Res. 2006 20 6 500 503 10.1002/ptr.1891 16619345
    [Google Scholar]
  33. Jaffal S.M. Al-Najjar B.O. Abbas M.A. Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation. Korean J. Pain 2021 34 3 262 270 10.3344/kjp.2021.34.3.262 34193633
    [Google Scholar]
  34. Gao Y. Cao E. Julius D. Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 2016 534 7607 347 351 10.1038/nature17964 27281200
    [Google Scholar]
  35. BIOVIA Discovery Studio. 2016 Available from: https://www.3ds.com/products/biovia/discovery-studio
  36. Jaffal S.M. Oran S. Alsalem M. Al-Najjar B.O. Effect of Arbutus andrachne L. methanolic leaf extract on TRPV1 function: Experimental and molecular docking studies. J. Appl. Pharm. Sci. 2022 12 10 10.7324/JAPS.2022.121007.
    [Google Scholar]
  37. Case D.A. Belfon K. Ben-Shalom I.Y. Brozell S.R. Cerutti D.S. Cheatham T.E. Darden T.A. Duke R.E. Giambasu G. Gilson M.K. Amber 2020 Reference Manual San Francisco, USA University of California 2020
    [Google Scholar]
  38. Jakalian A. Bush B.L. Jack D.B. Bayly C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 2000 21 2 132 146 10.1002/(SICI)1096‑987X(20000130)21:2<132::AID‑JCC5>3.0.CO;2‑P
    [Google Scholar]
  39. Jakalian A. Jack D.B. Bayly C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002 23 16 1623 1641 10.1002/jcc.10128 12395429
    [Google Scholar]
  40. Wang J. Wolf R.M. Caldwell J.W. Kollman P.A. Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004 25 9 1157 1174 10.1002/jcc.20035 15116359
    [Google Scholar]
  41. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  42. Roe D.R. Cheatham T.E. III PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  43. Miller B.R. III McGee T.D. Jr Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA.py : An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h 26605738
    [Google Scholar]
  44. Alsalem M. Millns P. Altarifi A. El-Salem K. Chapman V. Kendall D.A. Anti-nociceptive and desensitizing effects of olvanil on capsaicin-induced thermal hyperalgesia in the rat. BMC Pharmacol. Toxicol. 2016 17 1 31 10.1186/s40360‑016‑0074‑9 27439609
    [Google Scholar]
  45. Sanechika S. Shimobori C. Ohbuchi K. Identification of herbal components as TRPA1 agonists and TRPM8 antagonists. J. Nat. Med. 2021 75 3 717 725 10.1007/s11418‑021‑01515‑z 33877504
    [Google Scholar]
  46. Lima Cavendish R. de Souza Santos J. Belo Neto R. Oliveira Paixão A. Valéria Oliveira J. Divino de Araujo E. Berretta e Silva A.A. Maria Thomazzi S. Cordeiro Cardoso J. Zanardo Gomes M. Antinociceptive and anti-inflammatory effects of Brazilian red propolis extract and formononetin in rodents. J. Ethnopharmacol. 2015 173 127 133 10.1016/j.jep.2015.07.022 26192808
    [Google Scholar]
  47. Fang Y. Ye J. Zhao B. Sun J. Gu N. Chen X. Ren L. Chen J. Cai X. Zhang W. Yang Y. Cao P. Formononetin ameliorates oxaliplatin-induced peripheral neuropathy via the KEAP1-NRF2-GSTP1 axis. Redox Biol. 2020 36 101677 10.1016/j.redox.2020.101677 32823168
    [Google Scholar]
  48. Straub I. Krügel U. Mohr F. Teichert J. Rizun O. Konrad M. Oberwinkler J. Schaefer M. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo . Mol. Pharmacol. 2013 84 5 736 750 10.1124/mol.113.086843 24006495
    [Google Scholar]
  49. Straub I. Mohr F. Stab J. Konrad M. Philipp S.E. Oberwinkler J. Schaefer M. Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br. J. Pharmacol. 2013 168 8 1835 1850 10.1111/bph.12076 23190005
    [Google Scholar]
  50. Hanson S.M. Newstead S. Swartz K.J. Sansom M.S.P. Capsaicin interaction with TRPV1 channels in a lipid bilayer: Molecular dynamics simulation. Biophys. J. 2015 108 6 1425 1434 10.1016/j.bpj.2015.02.013 25809255
    [Google Scholar]
  51. Gonzalez-Nilo F.D. Caceres-Molina J. Bravo-Moraga F. Sepulveda R. Diaz-Franulic I. Structural characterization of ligand-specific interactions in TRPV1 channel: Gating mechanism by capsaicin and capsazepine. Biophys. J. 2016 110 3 284a 10.1016/j.bpj.2015.11.1537
    [Google Scholar]
  52. Cassidy A. Brown J.E. Hawdon A. Faughnan M.S. King L.J. Millward J. Zimmer-Nechemias L. Wolfe B. Setchell K.D.R. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J. Nutr. 2006 136 1 45 51 10.1093/jn/136.1.45 16365057
    [Google Scholar]
  53. Singh S.P. Wahajuddin Tewari D. Pradhan T. Jain G.K. PAMPA permeability, plasma protein binding, blood partition, pharmacokinetics and metabolism of formononetin, a methoxylated isoflavone. Food Chem. Toxicol. 2011 49 5 1056 1062 10.1016/j.fct.2011.01.012 21266188
    [Google Scholar]
  54. Gampe N. Dávid D.N. Takács-Novák K. Backlund A. Béni S. In vitro and in silico evaluation of Ononis isoflavonoids as molecules targeting the central nervous system. PLoS One 2022 17 3 e0265639 10.1371/journal.pone.0265639 35298568
    [Google Scholar]
  55. Luo L.Y. Fan M.X. Zhao H.Y. Li M.X. Wu X. Gao W.Y. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models. J. Agric. Food Chem. 2018 66 11 2917 2924 10.1021/acs.jafc.8b00035 29504397
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331246241023095720
Loading
/content/journals/cmc/10.2174/0109298673331246241023095720
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: analgesic ; TRPV1 ; capsazepine ; molecular dynamics ; ononin ; calcium imaging
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test