Skip to content
2000
image of Discovery of 5-(Substituted Phenyl)-2-aryl Benzimidazole Derivatives as SIRT1 Activators: Their Design, in silico Studies, Synthesis, and in vitro Evaluation

Abstract

Aim

Silent information regulator two homologue one (SIRT1) is an emerging target for managing metabolic disorders. This study aimed to synthesize novel 5-(substituted phenyl)-2-aryl benzimidazole derivatives and evaluate them for SIRT1 activation.

Methods

The compounds were designed according to the findings of the QSAR models framed in our previous studies. Molecular docking and dynamics studies were also performed to explore the interactions of designed compounds with the active site of the SIRT1 enzyme using AutoDock Vina and Schrödinger Maestro version 11.8.012, respectively. Compounds with good binding affinity were synthesized by Suzuki-Miyaura cross-coupling and spectrally characterized. The molecules were evaluated for their SIRT1 activation properties using a fluorescent screening kit. Based on the results of a structure-activity relationship was established. SwissADME was employed to calculate the pharmacokinetics characteristics of the synthesized molecules.

Results

The molecular docking studies revealed that all the activators were effectively docked in the catalytic active site. All compounds demonstrated interactions with important amino acids like Glu230 and Arg446. In molecular dynamics simulations, the root mean square deviation (RMSD) of compound and protein SIRT1 remained stable, , below 3mm. Compound , 4-(2-(3,4-dihydroxy-5-nitrophenyl)--benzoimidazol-5-yl)benzaldehyde, was the most potent compound with an EC value of 0.006 mM (±0.001) and maximum activation of 240.5%. All the synthesized compounds had acceptable theoretical ADME profiles, and drug-likeness properties complied with Lipinski’s rule.

Conclusion

According to the findings, synthesized compounds may be viable leads for SIRT1 activators and may be used to advance preclinical research utilizing animal models.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673330534240924104941
2024-10-10
2024-11-26
Loading full text...

Full text loading...

References

  1. Bitterman K.J. Anderson R.M. Cohen H.Y. Latorre-Esteves M. Sinclair D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 2002 277 47 45099 45107 10.1074/jbc.M205670200 12297502
    [Google Scholar]
  2. Morris B.J. Seven sirtuins for seven deadly diseases ofaging. Free Radic. Biol. Med. 2013 56 133 171 10.1016/j.freeradbiomed.2012.10.525 23104101
    [Google Scholar]
  3. Feldman J.L. Baeza J. Denu J.M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013 288 43 31350 31356 10.1074/jbc.C113.511261 24052263
    [Google Scholar]
  4. Imai S. Armstrong C.M. Kaeberlein M. Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000 403 6771 795 800 10.1038/35001622 10693811
    [Google Scholar]
  5. Tikhanovich I. Cox J. Weinman S.A. Forkhead box class O transcription factors in liver function and disease. J. Gastroenterol. Hepatol. 2013 28 S1 125 131 10.1111/jgh.12021 23855308
    [Google Scholar]
  6. Lee I.H. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med. 2019 51 9 1 11 10.1038/s12276‑019‑0302‑7 31492861
    [Google Scholar]
  7. Elibol B. Kilic U. High Levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front. Endocrinol. (Lausanne) 2018 9 614 10.3389/fendo.2018.00614 30374331
    [Google Scholar]
  8. Kumar A. Chauhan S. How much successful are the medicinal chemists in modulation of SIRT1: A critical review. Eur. J. Med. Chem. 2016 119 45 69 10.1016/j.ejmech.2016.04.063 27153347
    [Google Scholar]
  9. You Y. Liang W. SIRT1 and SIRT6: The role in aging-related diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 7 166815 10.1016/j.bbadis.2023.166815 37499928
    [Google Scholar]
  10. Sun C. Bai S. Liang Y. Liu D. Liao J. Chen Y. Zhao X. Wu B. Huang D. Chen M. Wu D. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed. Pharmacother. 2023 162 114573 10.1016/j.biopha.2023.114573 37018986
    [Google Scholar]
  11. Wang F. Chen H.Z. Lv X. Liu D.P. SIRT1 as a novel potential treatment target for vascular aging and age-related vascular diseases. Curr. Mol. Med. 2013 13 1 155 164 10.2174/156652413804486223 22934845
    [Google Scholar]
  12. Lee S.H. Yang J.H. Park U.H. Choi H. Kim Y.S. Yoon B.E. Han H.J. Kim H.T. Um S.J. Kim E.J. SIRT1 ubiquitination is regulated by opposing activities of APC/C-Cdh1 and AROS during stress-induced premature senescence. Exp. Mol. Med. 2023 55 6 1232 1246 10.1038/s12276‑023‑01012‑1 37258580
    [Google Scholar]
  13. Sung J.Y. Kim S.G. Kim J.R. Choi H.C. SIRT1 suppresses cellular senescence and inflammatory cytokine release in human dermal fibroblasts by promoting the deacetylation of NF-κB and activating autophagy. Exp. Gerontol. 2021 150 111394 10.1016/j.exger.2021.111394 33965557
    [Google Scholar]
  14. Liu Y.P. Wen R. Liu C.F. Zhang T.N. Yang N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed. Pharmacother. 2023 164 114931 10.1016/j.biopha.2023.114931 37263163
    [Google Scholar]
  15. Askin L. Tibilli H. Tanriverdi O. Turkmen S. The relationship between coronary artery disease and SIRT1 protein. North. Clin. Istanb. 2020 7 6 631 635 10.14744/nci.2020.31391 33381707
    [Google Scholar]
  16. Han D. Wang J. Ma S. Chen Y. Cao F. SIRT1 as a promising novel therapeutic target for myocardial ischemia reperfusion injury and cardiometabolic disease. Curr. Drug Targets 2017 18 15 1746 1753 10.2174/1389450116666150630110529 26122034
    [Google Scholar]
  17. Chen J. Lou R. Zhou F. Li D. Peng C. Lin L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front. Immunol. 2022 13 1068986 10.3389/fimmu.2022.1068986 36505468
    [Google Scholar]
  18. Mengozzi A. Costantino S. Paneni F. Duranti E. Nannipieri M. Mancini R. Lai M. La Rocca V. Puxeddu I. Antonioli L. Fornai M. Ghionzoli M. Georgiopoulos G. Ippolito C. Bernardini N. Ruschitzka F. Pugliese N.R. Taddei S. Virdis A. Masi S. Targeting SIRT1 rescues age- and obesity-induced microvascular dysfunction in ex vivo human vessels. Circ. Res. 2022 131 6 476 491 10.1161/CIRCRESAHA.122.320888 35968712
    [Google Scholar]
  19. Winnik S. Stein S. Matter C.M. SIRT1 - An anti-inflammatory pathway at the crossroads between metabolic disease and atherosclerosis. Curr. Vasc. Pharmacol. 2012 10 6 693 696 10.2174/157016112803520756 23259556
    [Google Scholar]
  20. Mihanfar A. Akbarzadeh M. Ghazizadeh Darband S. Sadighparvar S. Majidinia M. SIRT1: A promising therapeutic target in type 2 diabetes mellitus. Arch. Physiol. Biochem. 2024 130 1 13 28 10.1080/13813455.2021.1956976 34379994
    [Google Scholar]
  21. Bartoli-Leonard F. Wilkinson F.L. Schiro A. Inglott F.S. Alexander M.Y. Weston R. Suppression of SIRT1 in diabetic conditions induces osteogenic differentiation of human vascular smooth muscle cells via RUNX2 signalling. Sci. Rep. 2019 9 1 878 10.1038/s41598‑018‑37027‑2 30696833
    [Google Scholar]
  22. Hammer S.S. Vieira C.P. McFarland D. Sandler M. Levitsky Y. Dorweiler T.F. Lydic T.A. Asare-Bediako B. Adu-Agyeiwaah Y. Sielski M.S. Dupont M. Longhini A.L. Li Calzi S. Chakraborty D. Seigel G.M. Proshlyakov D.A. Grant M.B. Busik J.V. Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction. Diabetologia 2021 64 7 1674 1689 10.1007/s00125‑021‑05431‑5 33770194
    [Google Scholar]
  23. Strycharz J. Rygielska Z. Swiderska E. Drzewoski J. Szemraj J. Szmigiero L. Sliwinska A. SIRT1 as a therapeutic target in diabetic complications. Curr. Med. Chem. 2018 25 9 1002 1035 10.2174/0929867324666171107103114 29110598
    [Google Scholar]
  24. Chen J. Chen H. Pan L. SIRT1 and gynecological malignancies (Review). Oncol. Rep. 2021 45 4 43 10.3892/or.2021.7994 33649834
    [Google Scholar]
  25. An Y. Wang B. Wang X. Dong G. Jia J. Yang Q. SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop. Cell Death Dis. 2020 11 2 115 10.1038/s41419‑020‑2308‑4 32051395
    [Google Scholar]
  26. Wątroba M. Szewczyk G. Szukiewicz D. The role of sirtuin-1 (SIRT1) in the physiology and pathophysiology of the human placenta. Int. J. Mol. Sci. 2023 24 22 16210 10.3390/ijms242216210 38003402
    [Google Scholar]
  27. Zbroch T. Lesniczak J. Malyszko J. Zbroch E. The potential impact of sirtuin 1 protein on premature ovarian insufficiency. Curr. Proteomics 2018 15 3 208 213 10.2174/1570164614666171107160539
    [Google Scholar]
  28. Li X. He Y. Wu S. Zhang P. Gan M. Chen L. Zhao Y. Niu L. Zhang S. Jiang Y. Guo Z. Wang J. Shen L. Zhu L. Regulation of SIRT1 in Ovarian function: PCOS treatment. Curr. Issues Mol. Biol. 2023 45 3 2073 2089 10.3390/cimb45030133 36975503
    [Google Scholar]
  29. Alqarni M.H. Foudah A.I. Muharram M.M. Labrou N.E. The pleiotropic function of human sirtuins as modulators of metabolic pathways and viral infections. Cells 2021 10 2 460 10.3390/cells10020460 33669990
    [Google Scholar]
  30. Jin Q. Ma F. Liu T. Yang L. Mao H. Wang Y. Peng L. Li P. Zhan Y. Sirtuins in kidney diseases: Potential mechanism and therapeutic targets. Cell Commun. Signal. 2024 22 1 114 10.1186/s12964‑023‑01442‑4 38347622
    [Google Scholar]
  31. Yan J. Wang J. He J.C. Zhong Y. Sirtuin 1 in chronic kidney disease and therapeutic potential of targeting sirtuin 1. Front. Endocrinol. (Lausanne) 2022 13 917773 10.3389/fendo.2022.917773 35795148
    [Google Scholar]
  32. Razick D.I. Akhtar M. Wen J. Alam M. Dean N. Karabala M. Ansari U. Ansari Z. Tabaie E. Siddiqui S. The role of sirtuin 1 (SIRT1) in neurodegeneration. Cureus 2023 15 6 e40463 10.7759/cureus.40463 37456463
    [Google Scholar]
  33. Yang Y. Liu Y. Wang Y. Chao Y. Zhang J. Jia Y. Tie J. Hu D. Regulation of SIRT1 and its roles in inflammation. Front. Immunol. 2022 13 831168 10.3389/fimmu.2022.831168 35359990
    [Google Scholar]
  34. Borra M.T. Smith B.C. Denu J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 2005 280 17 17187 17195 10.1074/jbc.M501250200 15749705
    [Google Scholar]
  35. Shaito A. Al-Mansoob M. Ahmad S.M.S. Haider M.Z. Eid A.H. Posadino A.M. Pintus G. Giordo R. Resveratrol-mediated regulation of mitochondria biogenesis-associated pathways in neurodegenerative diseases: Molecular insights and potential therapeutic applications. Curr. Neuropharmacol. 2023 21 5 1184 1201 10.2174/1570159X20666221012122855 36237161
    [Google Scholar]
  36. Ribeiro R. Santos A.C. Calazans M.O. De Oliveira A.C.P. Vieira L.B. Is resveratrol a prospective therapeutic strategy in the co-association of glucose metabolism disorders and neurodegenerative diseases? Nutr. Neurosci. 2022 25 11 2442 2457 10.1080/1028415X.2021.1972514 34514962
    [Google Scholar]
  37. Huang D.D. Shi G. Jiang Y. Yao C. Zhu C. A review on the potential of resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacother. 2020 125 109767 10.1016/j.biopha.2019.109767 32058210
    [Google Scholar]
  38. Mahjabeen W. Khan D.A. Mirza S.A. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: A randomized, placebo-controlled trial. Complement. Ther. Med. 2022 66 102819 10.1016/j.ctim.2022.102819 35240291
    [Google Scholar]
  39. Breuss J.M. Atanasov A.G. Uhrin P. Resveratrol and its effects on the vascular system. Int. J. Mol. Sci. 2019 20 7 1523 10.3390/ijms20071523 30934670
    [Google Scholar]
  40. Ren B. Kwah M.X.Y. Liu C. Ma Z. Shanmugam M.K. Ding L. Xiang X. Ho P.C.L. Wang L. Ong P.S. Goh B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021 515 63 72 10.1016/j.canlet.2021.05.001 34052324
    [Google Scholar]
  41. Nadile M. Retsidou M.I. Gioti K. Beloukas A. Tsiani E. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies. Nutrients 2022 14 24 5273 10.3390/nu14245273 36558430
    [Google Scholar]
  42. Molani-Gol R. Rafraf M. The anti-obesity effects of resveratrol on the 3T3-L1 adipocytes. Int. J. Vitam. Nutr. Res. 2024 94 3-4 252 263 10.1024/0300‑9831/a000784 37248954
    [Google Scholar]
  43. Barber T.M. Kabisch S. Randeva H.S. Pfeiffer A.F.H. Weickert M.O. Implications of resveratrol in obesity and insulin resistance: A state-of-the-art review. Nutrients 2022 14 14 2870 10.3390/nu14142870 35889827
    [Google Scholar]
  44. Shahcheraghi S.H. Salemi F. Small S. Syed S. Salari F. Alam W. Cheang W.S. Saso L. Khan H. Resveratrol regulates inflammation and improves oxidative stress via Nrf2 signaling pathway: Therapeutic and biotechnological prospects. Phytother. Res. 2023 37 4 1590 1605 10.1002/ptr.7754 36752350
    [Google Scholar]
  45. Meng T. Xiao D. Muhammed A. Deng J. Chen L. He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021 26 1 229 10.3390/molecules26010229 33466247
    [Google Scholar]
  46. Pignet A.L. Schellnegger M. Hecker A. Kohlhauser M. Kotzbeck P. Kamolz L.P. Resveratrol-induced signal transduction in wound healing. Int. J. Mol. Sci. 2021 22 23 12614 10.3390/ijms222312614 34884419
    [Google Scholar]
  47. Pyo I.S. Yun S. Yoon Y.E. Choi J.W. Lee S.J. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules 2020 25 20 4649 10.3390/molecules25204649 33053864
    [Google Scholar]
  48. Hosoda R. Nakashima R. Yano M. Iwahara N. Asakura S. Nojima I. Saga Y. Kunimoto R. Horio Y. Kuno A. Resveratrol, a SIRT1 activator, attenuates aging-associated alterations in skeletal muscle and heart in mice. J. Pharmacol. Sci. 2023 152 2 112 122 10.1016/j.jphs.2023.04.001 37169475
    [Google Scholar]
  49. Gonçalinho G.H.F. Kuwabara K.L. Faria N.F.O. Goes M.F.S. Roggerio A. Avakian S.D. Strunz C.M.C. Mansur A.P. Sirtuin 1 and vascular function in healthy women and men: A randomized clinical trial comparing the effects of energy restriction and resveratrol. Nutrients 2023 15 13 2949 10.3390/nu15132949 37447275
    [Google Scholar]
  50. Rasbach K.A. Schnellmann R.G. Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 2008 325 2 536 543 10.1124/jpet.107.134882 18267976
    [Google Scholar]
  51. Dao T.T. Tran T.L. Kim J. Nguyen P.H. Lee E.H. Park J. Jang I.S. Oh W.K. Terpenylated coumarins as SIRT1 activators isolated from Ailanthus altissima. J. Nat. Prod. 2012 75 7 1332 1338 10.1021/np300258u 22799262
    [Google Scholar]
  52. Nayagam V.M. Wang X. Tan Y.C. Poulsen A. Goh K.C. Ng T. Wang H. Song H.Y. Ni B. Entzeroth M. Stünkel W. SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents. SLAS Discov. 2006 11 8 959 967 10.1177/1087057106294710 17099246
    [Google Scholar]
  53. Mai A. Valente S. Meade S. Carafa V. Tardugno M. Nebbioso A. Galmozzi A. Mitro N. De Fabiani E. Altucci L. Kazantsev A. Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J. Med. Chem. 2009 52 17 5496 5504 10.1021/jm9008289 19663498
    [Google Scholar]
  54. Bemis J.E. Vu C.B. Xie R. Nunes J.J. Ng P.Y. Disch J.S. Milne J.C. Carney D.P. Lynch A.V. Jin L. Smith J.J. Lavu S. Iffland A. Jirousek M.R. Perni R.B. Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg. Med. Chem. Lett. 2009 19 8 2350 2353 10.1016/j.bmcl.2008.11.106 19303289
    [Google Scholar]
  55. Vu C.B. Bemis J.E. Disch J.S. Ng P.Y. Nunes J.J. Milne J.C. Carney D.P. Lynch A.V. Smith J.J. Lavu S. Lambert P.D. Gagne D.J. Jirousek M.R. Schenk S. Olefsky J.M. Perni R.B. Discovery of imidazo[1,2-b]thiazole derivatives as novel SIRT1 activators. J. Med. Chem. 2009 52 5 1275 1283 10.1021/jm8012954 19199480
    [Google Scholar]
  56. Layek M. Reddy M A. Dhanunjaya Rao A.V. Alvala M. Arunasree M.K. Islam A. Mukkanti K. Iqbal J. Pal M. Transition metal mediated construction of pyrrole ring on 2,3-dihydroquinolin-4(1H)-one: Synthesis and pharmacological evaluation of novel tricyclic heteroarenes. Org. Biomol. Chem. 2011 9 4 1004 1007 10.1039/C0OB00771D 21180745
    [Google Scholar]
  57. Scisciola L. Sarno F. Carafa V. Cosconati S. Di Maro S. Ciuffreda L. De Angelis A. Stiuso P. Feoli A. Sbardella G. Altucci L. Nebbioso A. Two novel SIRT1 activators, SCIC2 and SCIC2.1, enhance SIRT1-mediated effects in stress response and senescence. Epigenetics 2020 15 6-7 664 683 10.1080/15592294.2019.1704349 31942817
    [Google Scholar]
  58. Dai H. Sinclair D.A. Ellis J.L. Steegborn C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther. 2018 188 140 154 10.1016/j.pharmthera.2018.03.004 29577959
    [Google Scholar]
  59. Pulla V.K. Alvala M. Sriram D.S. Viswanadha S. Sriram D. Yogeeswari P. Structure-based drug design of small molecule SIRT1 modulators to treat cancer and metabolic disorders. J. Mol. Graph. Model. 2014 52 46 56 10.1016/j.jmgm.2014.06.005 25000096
    [Google Scholar]
  60. Feng T. Liu P. Wang X. Luo J. Zuo X. Jiang X. Liu C. Li Y. Li N. Chen M. Zhu N. Han X. Liu C. Xu Y. Si S. SIRT1 activator E1231 protects from experimental atherosclerosis and lowers plasma cholesterol and triglycerides by enhancing ABCA1 expression. Atherosclerosis 2018 274 172 181 10.1016/j.atherosclerosis.2018.04.039 29787963
    [Google Scholar]
  61. Kumar A. Chauhan S. QSAR differential model for prediction of sirt1 modulation using monte carlo method. Drug Res. (Stuttg.) 2016 67 3 156 162 10.1055/s‑0042‑119725 27992935
    [Google Scholar]
  62. Kumar A. Chauhan S. Use of the monte carlo method for OECD principles‐guided QSAR modeling of SIRT1 inhibitors. Arch. Pharm. (Weinheim) 2017 350 1 e1600268 10.1002/ardp.201600268 28025857
    [Google Scholar]
  63. Chauhan S. Kumar A. Consensus QSAR modelling of SIRT1 activators using simplex representation of molecular structure. SAR QSAR Environ. Res. 2018 29 4 277 294 10.1080/1062936X.2018.1426626 29390919
    [Google Scholar]
  64. Kathirvelan D. Yuvaraj P. Babu K. Nagarajan A.S. Reddy B.S.R. A green synthesis of benzimidazoles. Indian J. Chem. Sect. B 2013 52B 1152 1156
    [Google Scholar]
  65. Bao K. Dai Y. Zhu Z.B. Tu F.J. Zhang W.G. Yao X.S. Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg. Med. Chem. 2010 18 18 6708 6714 10.1016/j.bmc.2010.07.062 20729091
    [Google Scholar]
  66. AAT Bioquest Inc Quest Graph™ EC50 Calculator. 2024 Available from: https://www.aatbio.com/tools/ec50-calculator
  67. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  68. Pedretti A. Villa L. Vistoli G. VEGA: A versatile program to convert, handle and visualize molecular structure on Windows-based PCs. J. Mol. Graph. Model. 2002 21 1 47 49 10.1016/S1093‑3263(02)00123‑7 12413030
    [Google Scholar]
  69. Cao D. Wang M. Qiu X. Liu D. Jiang H. Yang N. Xu R.M. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 2015 29 12 1316 1325 10.1101/gad.265462.115 26109052
    [Google Scholar]
  70. BIOVIA Drug design with validated 3D modeling and simulation tools. Available from: https://www.3ds.com/products/biovia/discovery-studio
  71. Desmond Molecular Dynamics System Maestro-Desmond interoperability tools.
    [Google Scholar]
  72. Bowers K.J. Chow D.E. Xu H. Dror R.O. Eastwood M.P. Gregersen B.A. Klepeis J.L. Kolossvary I. Moraes M.A. Sacerdoti F.D. Salmon J.K. Shan Y. Shaw D.E. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing Tampa, FL, USA 2006 43 10.1109/SC.2006.54
    [Google Scholar]
  73. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  74. Daina A. Zoete V. A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  75. Daina A. Michielin O. Zoete V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014 54 12 3284 3301 10.1021/ci500467k 25382374
    [Google Scholar]
  76. Hou X. Rooklin D. Fang H. Zhang Y. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci. Rep. 2016 6 1 38186 10.1038/srep38186 27901083
    [Google Scholar]
  77. Broussy S. Laaroussi H. Vidal M. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat). J. Enzyme Inhib. Med. Chem. 2020 35 1 1124 1136 10.1080/14756366.2020.1758691 32366137
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673330534240924104941
Loading
/content/journals/cmc/10.2174/0109298673330534240924104941
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test