Skip to content
2000
image of Anticancer Drug Discovery from Natural Compounds Targeting PI3K/AKT/mTOR Signaling Pathway

Abstract

The term cancer is used to describe a complex pathology characterized by the uncontrollable proliferation of cells, which displays a fast metastatic spread, being a disease with difficult treatment. In this context, Phosphatidylinositol 3-kinase (PI3K) represents a promising pathway to be inhibited, aiming to develop anticancer agents, since it performs a pivotal role in regulating essential cellular processes, including cell proliferation, growth, autophagy, and apoptosis. In parallel, natural compounds can effectively represent a therapeutic strategy to fight against malignant cells. Then, compounds derived from various plant sources, such as flavonoids, terpenoids, alkaloids, coumarins, and lignans, have exhibited remarkable and in anticancer properties. This review focused in the exploration of natural products targeting the PI3K/AKT/m-TOR signaling pathway, demonstrating that these compounds could even further investigated to reveal novel and effective anticancer drugs in the future.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673325229240928040758
2024-10-10
2024-11-26
Loading full text...

Full text loading...

References

  1. Ohiagu F.O. Chikezie P.C. Chikezie C.M. Enyoh C.E. Anticancer Activity of Nigerian Medicinal Plants: A Review. Futur. J. Pharm. Sci. 2021 7
    [Google Scholar]
  2. Ferlay J. Soerjomataram I. Dikshit R. Eser S. Mathers C. Rebelo M. Parkin D.M. Forman D. Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015 136 5 E359 E386 10.1002/ijc.29210 25220842
    [Google Scholar]
  3. dos Santos Nascimento I.J. de Moura R.O. C-KIT Receptor Inhibition as a Promising Approach to Design Anticancer Drugs. Curr. Med. Chem. 2023 30 24 2702 2704 10.2174/0929867330666230111110537 36631920
    [Google Scholar]
  4. Zayed M.F. Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases. Sci. Pharm. 2023 91 2 18 10.3390/scipharm91020018
    [Google Scholar]
  5. Zayed M.F. Ahmed H.E.A. Ihmaid S. Omar A.S.M. Abdelrahim A.S. Synthesis and screening of some new fluorinated quinazolinone–sulphonamide hybrids as anticancer agents. J. Taibah Univ. Med. Sci. 2015 10 3 333 339 10.1016/j.jtumed.2015.02.007
    [Google Scholar]
  6. Santos-Junior P.F. da S. Nascimento I.J. dos S. da Silva E.C.D. Monteiro K.L.C. de Freitas J.D. Synthesis of hybrids thiazole–quinoline, thiazole–indole and their analogs: In vitro anti-proliferative effects on cancer cell lines, DNA binding properties and molecular modeling. New J. Chem. 2021 45 13847 13859 10.1039/D1NJ02105B
    [Google Scholar]
  7. Zayed M.F. Rateb H.S. Ahmed S. Khaled O.A. Ibrahim S.R.M. Quinazolinone-Amino Acid Hybrids as Dual Inhibitors of EGFR Kinase and Tubulin Polymerization. Molecules 2018 23 7 1699 10.3390/molecules23071699 30002297
    [Google Scholar]
  8. Lichota A. Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci. 2018 19 11 3533 10.3390/ijms19113533 30423952
    [Google Scholar]
  9. Zeng B. Ge C. Zhao W. Fu K. Liu L. Lin Z. Fu Q. Li Z. Li R. Guo H. Li C. Zhao L. Hu H. Yang H. Huang W. Huang Y. Song X. Anticancer effect of the traditional Chinese medicine herb Maytenus compound via the EGFR/PI3K/AKT/GSK3β pathway. Transl. Cancer Res. 2019 8 5 2130 2140 10.21037/tcr.2019.09.30 35116963
    [Google Scholar]
  10. Ding H.W. Yu L. Bai M. xuan; Qin, X.C.; Song, M. tong; Zhao, Q.C. Design, Synthesis and Evaluation of Some 1,6-Disubstituted-1H-Benzo[d]Imidazoles Derivatives Targeted PI3K as Anticancer Agents. Bioorg. Chem. 2019 ••• 93
    [Google Scholar]
  11. Liu H. Zhang L. Zhang X. Cui Z. PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy. OncoTargets Ther. 2017 10 2865 2871 10.2147/OTT.S95267 28652768
    [Google Scholar]
  12. Engelman J.A. Luo J. Cantley L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 7 8 606 619 10.1038/nrg1879 16847462
    [Google Scholar]
  13. Xin M. Wang H.Y. Zhang H. Shen Y. Zhang S.Q. Synthesis and biological activity of new 2,4,6-trisubstituted triazines as potential phosphoinositide 3-kinase inhibitors. J. Chem. Res. 2020 44 7-8 393 402 10.1177/1747519820904844
    [Google Scholar]
  14. Yang H. Li Q. Su M. Luo F. Liu Y. Wang D. Fan Y. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition. Bioorg. Med. Chem. 2021 46 116346 10.1016/j.bmc.2021.116346 34403956
    [Google Scholar]
  15. Al Hasan M. Sabirianov M. Redwine G. Goettsch K. Yang S.X. Zhong H.A. Binding and selectivity studies of phosphatidylinositol 3-kinase (PI3K) inhibitors. J. Mol. Graph. Model. 2023 121 108433 10.1016/j.jmgm.2023.108433 36812742
    [Google Scholar]
  16. Liu P. Cheng H. Thomas M. Roberts, and J.J.Z. Targeting the Phosphoinositide 3-Kinase (Pi. Cancer 2011 8 627 644
    [Google Scholar]
  17. Garcia-Echeverria C. Sellers W.R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 2008 27 41 5511 5526 10.1038/onc.2008.246 18794885
    [Google Scholar]
  18. Yu M. Chen J. Xu Z. Yang B. He Q. Luo P. Yan H. Yang X. Development and safety of PI3K inhibitors in cancer. Arch. Toxicol. 2023 97 3 635 650 10.1007/s00204‑023‑03440‑4 36773078
    [Google Scholar]
  19. Meng D. He W. Zhang Y. Liang Z. Zheng J. Zhang X. Zheng X. Zhan P. Chen H. Li W. Cai L. Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review). Pharmacol. Res. 2021 173 105900 10.1016/j.phrs.2021.105900 34547385
    [Google Scholar]
  20. Scott W.J. Hentemann M.F. Rowley R.B. Bull C.O. Jenkins S. Bullion A.M. Johnson J. Redman A. Robbins A.H. Esler W. Fracasso R.P. Garrison T. Hamilton M. Michels M. Wood J.E. Wilkie D.P. Xiao H. Levy J. Stasik E. Liu N. Schaefer M. Brands M. Lefranc J. Discovery and SAR of Novel 2,3‐Dihydroimidazo[1,2‐ c ]quinazoline PI3K Inhibitors: Identification of Copanlisib (BAY 80‐6946). ChemMedChem 2016 11 14 1517 1530 10.1002/cmdc.201600148 27310202
    [Google Scholar]
  21. Suhail M. AlZahrani W.M. Shakil S. Tarique M. Tabrez S. Zughaibi T.A. Rehan M. Analysis of some flavonoids for inhibitory mechanism against cancer target phosphatidylinositol 3-kinase (PI3K) using computational tool. Front. Pharmacol. 2023 14 1236173 10.3389/fphar.2023.1236173 37900167
    [Google Scholar]
  22. Chen H. Gao Y. Wang A. Zhou X. Zheng Y. Zhou J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur. J. Med. Chem. 2015 92 648 655 10.1016/j.ejmech.2015.01.031 25617694
    [Google Scholar]
  23. da Silva-Júnior E.F. dos Santos Nascimento I.J. TNF-α Inhibitors from Natural Compounds: An Overview, CADD Approaches, and their Exploration for Anti-inflammatory Agents. Comb. Chem. High Throughput Screen. 2022 25 14 2317 2340 10.2174/1386207324666210715165943 34269666
    [Google Scholar]
  24. Xie S.B. He X.X. Yao S.K. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells. Int. J. Oncol. 2015 47 2 517 526 10.3892/ijo.2015.3023 26034977
    [Google Scholar]
  25. Yin Z. Yang Y. Guo T. Veeraraghavan V.P. Wang X. Potential chemotherapeutic effect of betalain against human non‐small cell lung cancer through PI3K /Akt/mTOR signaling pathway. Environ. Toxicol. 2021 36 6 1011 1020 10.1002/tox.23100 33522684
    [Google Scholar]
  26. Li G. Zhang C. Liang W. Zhang Y. Shen Y. Tian X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol. 2021 59 1 21 30 10.1080/13880209.2020.1865407 33417512
    [Google Scholar]
  27. Zheng X. Li W. Xu H. Liu J. Ren L. Yang Y. Li S. Wang J. Ji T. Du G. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm. Sin. B 2021 11 11 3465 3480 10.1016/j.apsb.2021.05.027 34900530
    [Google Scholar]
  28. Qi X. Chen Y. Liu S. Liu L. Yu Z. Yin L. Fu L. Deng M. Liang S. Lü M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. Pharm. Biol. 2023 61 1 696 709 10.1080/13880209.2023.2200787 37092313
    [Google Scholar]
  29. Jang J.H. Park J.E. Han J.S. Scopoletin increases glucose uptake through activation of PI3K and AMPK signaling pathway and improves insulin sensitivity in 3T3-L1 cells. Nutr. Res. 2020 74 52 61 10.1016/j.nutres.2019.12.003 31945607
    [Google Scholar]
  30. Rasul A. Yu B. Khan M. Zhang K. Iqbal F. Ma T. Yang H. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int. J. Oncol. 2012 40 4 1153 1161 10.3892/ijo.2011.1277 22139054
    [Google Scholar]
  31. Yang M. Wang H. Zhou M. Liu W. Kuang P. Liang H. Yuan Q. The natural compound sulforaphene, as a novel anticancer reagent, targeting PI3K-AKT signaling pathway in lung cancer. Oncotarget 2016 7 47 76656 76666 10.18632/oncotarget.12307 27765931
    [Google Scholar]
  32. Rong L. Li Z. Leng X. Li H. Ma Y. Chen Y. Song F. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomed. Pharmacother. 2020 122 109726 10.1016/j.biopha.2019.109726 31918283
    [Google Scholar]
  33. Hasibuan P.A.Z. Harahap U. Sitorus P. Satria D. The anticancer activities of Vernonia amygdalina Delile. Leaves on 4T1 breast cancer cells through phosphoinositide 3-kinase (PI3K) pathway. Heliyon 2020 6 7 e04449 10.1016/j.heliyon.2020.e04449 32715129
    [Google Scholar]
  34. CDC. About Global NCDs.
    [Google Scholar]
  35. World Health Organization. Noncommunicable diseases.
    [Google Scholar]
  36. WHO. Global cancer burden growing, amidst mounting need for services.
    [Google Scholar]
  37. Campos A.D. Weis S.M. Cheresh D.A. Metastasis is a highly stressful process. Cancer Metastasis Rev. 2020 39 4 1021 1022 10.1007/s10555‑020‑09938‑y 33159274
    [Google Scholar]
  38. Suhail Y. Cain M.P. Vanaja K. Kurywchak P.A. Levchenko A. Kalluri R. Kshitiz Systems Biology of Cancer Metastasis. Cell Syst. 2019 9 2 109 127 10.1016/j.cels.2019.07.003 31465728
    [Google Scholar]
  39. Jin X. Demere Z. Nair K. Ali A. Ferraro G.B. Natoli T. Deik A. Petronio L. Tang A.A. Zhu C. Wang L. Rosenberg D. Mangena V. Roth J. Chung K. Jain R.K. Clish C.B. Vander Heiden M.G. Golub T.R. A metastasis map of human cancer cell lines. Nature 2020 588 7837 331 336 10.1038/s41586‑020‑2969‑2 33299191
    [Google Scholar]
  40. Lu Y. Chan Y.T. Tan H.Y. Li S. Wang N. Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol. Cancer 2020 19 1 79 10.1186/s12943‑020‑01197‑3 32340605
    [Google Scholar]
  41. Zhou Y. Zhang Y. Gong H. Luo S. Cui Y. The Role of Exosomes and Their Applications in Cancer. Int. J. Mol. Sci. 2021 22 22 12204 10.3390/ijms222212204 34830085
    [Google Scholar]
  42. Chen S. Cao Z. Prettner K. Kuhn M. Yang J. Jiao L. Wang Z. Li W. Geldsetzer P. Bärnighausen T. Bloom D.E. Wang C. Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories From 2020 to 2050. JAMA Oncol. 2023 9 4 465 472 10.1001/jamaoncol.2022.7826 36821107
    [Google Scholar]
  43. Xiao Y. Liu P. Wei J. Zhang X. Guo J. Lin Y. Recent progress in targeted therapy for non-small cell lung cancer. Front. Pharmacol. 2023 14 1125547 10.3389/fphar.2023.1125547 36909198
    [Google Scholar]
  44. CDC. Cancer Treatments.
    [Google Scholar]
  45. Pan Z. Zhuang J. Ji C. Cai Z. Liao W. Huang Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett. 2018 15 4 4821 4826 10.3892/ol.2018.7988 29552121
    [Google Scholar]
  46. Huang M. Lu J.J. Ding J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021 11 1 5 13 10.1007/s13659‑020‑00293‑7 33389713
    [Google Scholar]
  47. Miricescu D. Totan A. Stanescu-Spinu I.I. Badoiu S.C. Stefani C. Greabu M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int. J. Mol. Sci. 2020 22 1 173 10.3390/ijms22010173 33375317
    [Google Scholar]
  48. Khan K. Quispe C. Javed Z. Iqbal M.J. Sadia H. Raza S. Irshad A. Salehi B. Reiner Ž. Sharifi-Rad J. Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell Int. 2020 20 1 560 10.1186/s12935‑020‑01660‑7 33292283
    [Google Scholar]
  49. Tewari D. Patni P. Bishayee A. Sah A.N. Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol. 2022 80 1 17 10.1016/j.semcancer.2019.12.008 31866476
    [Google Scholar]
  50. Carnero A. Blanco-Aparicio C. Renner O. Link W. Leal J. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 2008 8 3 187 198 10.2174/156800908784293659 18473732
    [Google Scholar]
  51. Hennessy B.T. Smith D.L. Ram P.T. Lu Y. Mills G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 2005 4 12 988 1004 10.1038/nrd1902 16341064
    [Google Scholar]
  52. Fattahi S. Amjadi-Moheb F. Tabaripour R. Ashrafi G.H. Akhavan-Niaki H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci. 2020 262 118513 10.1016/j.lfs.2020.118513 33011222
    [Google Scholar]
  53. Singh S.S. Yap W.N. Arfuso F. Kar S. Wang C. Cai W. Dharmarajan A.M. Sethi G. Kumar A.P. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J. Gastroenterol. 2015 21 43 12261 12273 10.3748/wjg.v21.i43.12261 26604635
    [Google Scholar]
  54. Park J.H. Pyun W.Y. Park H.W. Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets. Cells 2020 9 10 2308 10.3390/cells9102308 33081387
    [Google Scholar]
  55. Goldar S. Khaniani M.S. Derakhshan S.M. Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev. 2015 16 6 2129 2144 10.7314/APJCP.2015.16.6.2129 25824729
    [Google Scholar]
  56. Balakrishnan A. Chaillet J.R. Role of the inositol polyphosphate-4-phosphatase type II Inpp4b in the generation of ovarian teratomas. Dev. Biol. 2013 373 1 118 129 10.1016/j.ydbio.2012.10.011 23078915
    [Google Scholar]
  57. Park J.B. Lee C.S. Jang J.H. Ghim J. Kim Y.J. You S. Hwang D. Suh P.G. Ryu S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer 2012 12 11 782 792 10.1038/nrc3379 23076158
    [Google Scholar]
  58. Sarbassov D.D. Guertin D.A. Ali S.M. Sabatini D.M. Phosphorylation and Regulation of Akt/PKB by the Rictor-MTOR Complex. Science (80-. ). 2005 307 1098 1101
    [Google Scholar]
  59. Vanhaesebroeck B. Guillermet-Guibert J. Graupera M. Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 2010 11 5 329 341 10.1038/nrm2882 20379207
    [Google Scholar]
  60. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  61. Wendel H.G. Stanchina E. Fridman J.S. Malina A. Ray S. Kogan S. Cordon-Cardo C. Pelletier J. Lowe S.W. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004 428 6980 332 337 10.1038/nature02369 15029198
    [Google Scholar]
  62. Zinzalla V. Stracka D. Oppliger W. Hall M.N. Activation of mTORC2 by association with the ribosome. Cell 2011 144 5 757 768 10.1016/j.cell.2011.02.014 21376236
    [Google Scholar]
  63. Dossou A.S. Basu A. The Emerging Roles of mTORC1 in Macromanaging Autophagy. Cancers (Basel) 2019 11 10 1422 10.3390/cancers11101422 31554253
    [Google Scholar]
  64. Ueki K. Fruman D.A. Yballe C.M. Fasshauer M. Klein J. Asano T. Cantley L.C. Kahn C.R. Positive and negative roles of p85α and p85β regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J. Biol. Chem. 2017 292 13 5608 10.1074/jbc.A117.305602 28363934
    [Google Scholar]
  65. Lee H.J. Venkatarame Gowda Saralamma V. Kim S.M. Ha S.E. Raha S. Lee W.S. Kim E.H. Lee S.J. Heo J.D. Kim G.S. Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway. Nutrients 2018 10 8 1043 10.3390/nu10081043 30096805
    [Google Scholar]
  66. Ahmad I. Hoque M. Alam S.S.M. Zughaibi T.A. Tabrez S. Curcumin and Plumbagin Synergistically Target the PI3K/Akt/mTOR Pathway: A Prospective Role in Cancer Treatment. Int. J. Mol. Sci. 2023 24 7 6651 10.3390/ijms24076651 37047624
    [Google Scholar]
  67. Doustvandi M.A. Mohammadnejad F. Mansoori B. Tajalli H. Mohammadi A. Mokhtarzadeh A. Baghbani E. Khaze V. Hajiasgharzadeh K. Moghaddam M.M. Hamblin M.R. Baradaran B. Photodynamic therapy using zinc phthalocyanine with low dose of diode laser combined with doxorubicin is a synergistic combination therapy for human SK-MEL-3 melanoma cells. Photodiagn. Photodyn. Ther. 2019 28 88 97 10.1016/j.pdpdt.2019.08.027 31454716
    [Google Scholar]
  68. Yuan Y. Long H. Zhou Z. Fu Y. Jiang B. PI3K–AKT-Targeting Breast Cancer Treatments: Natural Products and Synthetic Compounds. Biomolecules 2023 13 1 93 10.3390/biom13010093 36671478
    [Google Scholar]
  69. Daniel P.M. Filiz G. Brown D.V. Christie M. Waring P.M. Zhang Y. Haynes J.M. Pouton C. Flanagan D. Vincan E. Johns T.G. Montgomery K. Phillips W.A. Mantamadiotis T. PI3K activation in neural stem cells drives tumorigenesis which can be ameliorated by targeting the cAMP response element binding protein. Neuro-oncol. 2018 20 10 1344 1355 10.1093/neuonc/noy068 29718345
    [Google Scholar]
  70. Jung C.H. Ro S.H. Cao J. Otto N.M. Kim D.H. mTOR regulation of autophagy. FEBS Lett. 2010 584 7 1287 1295 10.1016/j.febslet.2010.01.017 20083114
    [Google Scholar]
  71. Düvel K. Yecies J.L. Menon S. Raman P. Lipovsky A.I. Souza A.L. Triantafellow E. Ma Q. Gorski R. Cleaver S. Vander Heiden M.G. MacKeigan J.P. Finan P.M. Clish C.B. Murphy L.O. Manning B.D. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010 39 2 171 183 10.1016/j.molcel.2010.06.022 20670887
    [Google Scholar]
  72. Deprez J. Vertommen D. Alessi D.R. Hue L. Rider M.H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 1997 272 28 17269 17275 10.1074/jbc.272.28.17269 9211863
    [Google Scholar]
  73. Waldhart A.N. Dykstra H. Peck A.S. Boguslawski E.A. Madaj Z.B. Wen J. Veldkamp K. Hollowell M. Zheng B. Cantley L.C. McGraw T.E. Wu N. Phosphorylation of TXNIP by AKT Mediates Acute Influx of Glucose in Response to Insulin. Cell Rep. 2017 19 10 2005 2013 10.1016/j.celrep.2017.05.041 28591573
    [Google Scholar]
  74. Lee J.V. Carrer A. Shah S. Snyder N.W. Wei S. Venneti S. Worth A.J. Yuan Z.F. Lim H.W. Liu S. Jackson E. Aiello N.M. Haas N.B. Rebbeck T.R. Judkins A. Won K.J. Chodosh L.A. Garcia B.A. Stanger B.Z. Feldman M.D. Blair I.A. Wellen K.E. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 2014 20 2 306 319 10.1016/j.cmet.2014.06.004 24998913
    [Google Scholar]
  75. Courtney K.D. Corcoran R.B. Engelman J.A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol. 2010 28 6 1075 1083 10.1200/JCO.2009.25.3641 20085938
    [Google Scholar]
  76. Yang J. Nie J. Ma X. Wei Y. Peng Y. Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer 2019 18 1 26 10.1186/s12943‑019‑0954‑x 30782187
    [Google Scholar]
  77. Nakanishi Y. Walter K. Spoerke J.M. O’Brien C. Huw L.Y. Hampton G.M. Lackner M.R. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110β. Cancer Res. 2016 76 5 1193 1203 10.1158/0008‑5472.CAN‑15‑2201 26759240
    [Google Scholar]
  78. Engelman J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 2009 9 8 550 562 10.1038/nrc2664 19629070
    [Google Scholar]
  79. Shah N.P. Kasap C. Weier C. Balbas M. Nicoll J.M. Bleickardt E. Nicaise C. Sawyers C.L. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 2008 14 6 485 493 10.1016/j.ccr.2008.11.001 19061839
    [Google Scholar]
  80. Yap T.A. Garrett M.D. Walton M.I. Raynaud F. de Bono J.S. Workman P. Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol. 2008 8 4 393 412 10.1016/j.coph.2008.08.004 18721898
    [Google Scholar]
  81. Foukas L.C. Claret M. Pearce W. Okkenhaug K. Meek S. Peskett E. Sancho S. Smith A.J.H. Withers D.J. Vanhaesebroeck B. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 2006 441 7091 366 370 10.1038/nature04694 16625210
    [Google Scholar]
  82. Zhang J. Grindley J.C. Yin T. Jayasinghe S. He X.C. Ross J.T. Haug J.S. Rupp D. Porter-Westpfahl K.S. Wiedemann L.M. Wu H. Li L. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006 441 7092 518 522 10.1038/nature04747 16633340
    [Google Scholar]
  83. Ediriweera M.K. Tennekoon K.H. Samarakoon S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol. 2019 59 147 160 10.1016/j.semcancer.2019.05.012 31128298
    [Google Scholar]
  84. Jean S. Kiger A.A. Classes of phosphoinositide 3-kinases at a glance. J. Cell Sci. 2014 127 5 923 928 10.1242/jcs.093773 24587488
    [Google Scholar]
  85. Yuan T.L. Cantley L.C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008 27 41 5497 5510 10.1038/onc.2008.245 18794884
    [Google Scholar]
  86. Fritsch R. Downward J. SnapShot: Class I PI3K isoform signaling. Cell 2013 154 4 940 940.e1 10.1016/j.cell.2013.07.045 23953121
    [Google Scholar]
  87. Kim C. Lee J.H. Ko J.H. Chinnathambi A. Alharbi S.A. Shair O.H.M. Sethi G. Ahn K.S. Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model. Biomolecules 2019 9 7 262 10.3390/biom9070262 31284669
    [Google Scholar]
  88. Yap T.A. Carden C.P. Kaye S.B. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat. Rev. Cancer 2009 9 3 167 181 10.1038/nrc2583 19238149
    [Google Scholar]
  89. Triscott J. Rubin M.A. Prostate Power Play: Does Pik3ca Accelerate Pten -Deficient Cancer Progression? Cancer Discov. 2018 8 6 682 685 10.1158/2159‑8290.CD‑18‑0369 29858226
    [Google Scholar]
  90. Brazzatti J.A. Klingler-Hoffmann M. Haylock-Jacobs S. Harata-Lee Y. Niu M. Higgins M.D. Kochetkova M. Hoffmann P. McColl S.R. Differential roles for the p101 and p84 regulatory subunits of PI3Kγ in tumor growth and metastasis. Oncogene 2012 31 18 2350 2361 10.1038/onc.2011.414 21996737
    [Google Scholar]
  91. Croessmann S. Sheehan J.H. Lee K. Sliwoski G. He J. Nagy R. Riddle D. Mayer I.A. Balko J.M. Lanman R. Miller V.A. Cantley L.C. Meiler J. Arteaga C.L. PIK3CA C2 Domain Deletions Hyperactivate Phosphoinositide 3-kinase (PI3K), Generate Oncogene Dependence, and Are Exquisitely Sensitive to PI3K α Inhibitors. Clin. Cancer Res. 2018 24 6 1426 1435 10.1158/1078‑0432.CCR‑17‑2141 29284706
    [Google Scholar]
  92. Walker E.H. Perisic O. Ried C. Stephens L. Williams R.L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 1999 402 6759 313 320 10.1038/46319 10580505
    [Google Scholar]
  93. Zhao L. Vogt P.K. Class I PI3K in oncogenic cellular transformation. Oncogene 2008 27 41 5486 5496 10.1038/onc.2008.244 18794883
    [Google Scholar]
  94. Murugan A.K. Munirajan A.K. Tsuchida N. Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett. 2013 338 2 193 203 10.1016/j.canlet.2013.04.005 23597702
    [Google Scholar]
  95. Martini M. De Santis M.C. Braccini L. Gulluni F. Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann. Med. 2014 46 6 372 383 10.3109/07853890.2014.912836 24897931
    [Google Scholar]
  96. Backer J.M. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem. J. 2016 473 15 2251 2271 10.1042/BCJ20160170 27470591
    [Google Scholar]
  97. Dobbin Z. Landen C. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int. J. Mol. Sci. 2013 14 4 8213 8227 10.3390/ijms14048213 23591839
    [Google Scholar]
  98. Vidotto T. Melo C.M. Lautert-Dutra W. Chaves L.P. Reis R.B. Squire J.A. Pan-cancer genomic analysis shows hemizygous PTEN loss tumors are associated with immune evasion and poor outcome. Sci. Rep. 2023 13 1 5049 10.1038/s41598‑023‑31759‑6 36977733
    [Google Scholar]
  99. Jia S. Liu Z. Zhang S. Liu P. Zhang L. Lee S.H. Zhang J. Signoretti S. Loda M. Roberts T.M. Zhao J.J. Essential roles of PI(3)K–p110β in cell growth, metabolism and tumorigenesis. Nature 2008 454 7205 776 779 10.1038/nature07091 18594509
    [Google Scholar]
  100. Carnero A. Paramio J.M. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models. Front. Oncol. 2014 4 252 10.3389/fonc.2014.00252 25295225
    [Google Scholar]
  101. Zhu K. Wu Y. He P. Fan Y. Zhong X. Zheng H. Luo T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells 2022 11 16 2508 10.3390/cells11162508 36010585
    [Google Scholar]
  102. Peng Y. Wang Y. Zhou C. Mei W. Zeng C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front. Oncol. 2022 12 819128 10.3389/fonc.2022.819128 35402264
    [Google Scholar]
  103. Xu W. Yang Z. Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes. Migr. 2015 9 4 317 324 10.1080/19336918.2015.1016686 26241004
    [Google Scholar]
  104. Vara J.Á.F. Casado E. de Castro J. Cejas P. Belda-Iniesta C. González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004 30 2 193 204 10.1016/j.ctrv.2003.07.007 15023437
    [Google Scholar]
  105. Liu R. Chen Y. Liu G. Li C. Song Y. Cao Z. Li W. Hu J. Lu C. Liu Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020 11 9 797 10.1038/s41419‑020‑02998‑6 32973135
    [Google Scholar]
  106. Hillmann P. Fabbro D. PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. Int. J. Mol. Sci. 2019 20 22 5792 10.3390/ijms20225792 31752127
    [Google Scholar]
  107. Sheridan C. Downward J. Inhibiting the RAS-PI3K pathway in cancer therapy. Enzymes. 2013 34 Pt B 107 36 10.1016/B978‑0‑12‑420146‑0.00005‑6
    [Google Scholar]
  108. Noorolyai S. Shajari N. Baghbani E. Sadreddini S. Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene 2019 698 120 128 10.1016/j.gene.2019.02.076 30849534
    [Google Scholar]
  109. Raynaud F.I. Eccles S.A. Patel S. Alix S. Box G. Chuckowree I. Folkes A. Gowan S. De Haven Brandon A. Di Stefano F. Hayes A. Henley A.T. Lensun L. Pergl-Wilson G. Robson A. Saghir N. Zhyvoloup A. McDonald E. Sheldrake P. Shuttleworth S. Valenti M. Wan N.C. Clarke P.A. Workman P. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther. 2009 8 7 1725 1738 10.1158/1535‑7163.MCT‑08‑1200 19584227
    [Google Scholar]
  110. Liu P. Cheng H. Roberts T.M. Zhao J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009 8 8 627 644 10.1038/nrd2926 19644473
    [Google Scholar]
  111. Liu N. Rowley B.R. Bull C.O. Schneider C. Haegebarth A. Schatz C.A. Fracasso P.R. Wilkie D.P. Hentemann M. Wilhelm S.M. Scott W.J. Mumberg D. Ziegelbauer K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther. 2013 12 11 2319 2330 10.1158/1535‑7163.MCT‑12‑0993‑T 24170767
    [Google Scholar]
  112. Janku F. Yap T.A. Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 2018 15 5 273 291 10.1038/nrclinonc.2018.28 29508857
    [Google Scholar]
  113. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  114. Cidado J. Park B.H. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J. Mammary Gland Biol. Neoplasia 2012 17 3-4 205 216 10.1007/s10911‑012‑9264‑2 22865098
    [Google Scholar]
  115. Massacesi C. Di Tomaso E. Urban P. Germa C. Quadt C. Trandafir L. Aimone P. Fretault N. Dharan B. Tavorath R. Hirawat S. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. OncoTargets Ther. 2016 9 203 210 10.2147/OTT.S89967 26793003
    [Google Scholar]
  116. Furet P. Guagnano V. Fairhurst R.A. Imbach-Weese P. Bruce I. Knapp M. Fritsch C. Blasco F. Blanz J. Aichholz R. Hamon J. Fabbro D. Caravatti G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett. 2013 23 13 3741 3748 10.1016/j.bmcl.2013.05.007 23726034
    [Google Scholar]
  117. Nascimento I.J.S. Cavalcanti M.A.T. de Moura R.O. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur. J. Med. Chem. 2023 258 115550 10.1016/j.ejmech.2023.115550 37336067
    [Google Scholar]
  118. dos Santos Nascimento I.J. da Silva Rodrigues É.E. da Silva M.F. de Araújo-Júnior J.X. de Moura R.O. Advances in computational methods to discover new NS2B-NS3 inhibitors useful against dengue and zika viruses. Curr. Top. Med. Chem. 2022 22 29 2435 2462 10.2174/1568026623666221122121330 36415099
    [Google Scholar]
  119. dos Santos Nascimento I.J. da Silva-Júnior E.F. de Aquino T.M. Molecular Modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an Alternative Drug Target Against Coronaviruses. Curr. Drug Targets 2022 23 3 240 259 10.2174/1389450122666210809090909 34370633
    [Google Scholar]
  120. dos Santos Nascimento I.J. de Aquino T.M. da Silva Júnior E.F. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E 2 Synthase-1 (mPGES-1). Curr. Med. Chem. 2022 29 33 5397 5419 10.2174/0929867329666220317122948 35301943
    [Google Scholar]
  121. dos Santos Nascimento I.J. Santana Gomes J.N. de Oliveira Viana J. The Power of Molecular Dynamics Simulations and Their Applications to Discover Cysteine Protease Inhibitors. Mini-Reviews. Med. Chem. 2023 ••• 23
    [Google Scholar]
  122. Santos Nascimento I.J. Applied Computer-Aided Drug Design: Models and Methods Bentham Science Publishers 2023
    [Google Scholar]
  123. Singh P. Bast F. Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components. Med. Chem. Res. 2014 23 4 1690 1700 10.1007/s00044‑013‑0774‑2
    [Google Scholar]
  124. Dotolo S. Cervellera C. Russo M. Russo G.L. Facchiano A. Virtual Screening of Natural Compounds as Potential PI3K-AKT1 Signaling Pathway Inhibitors and Experimental Validation. Molecules 2021 26 2 492 10.3390/molecules26020492 33477701
    [Google Scholar]
  125. Gulati N. Laudet B. Zohrabian V.M. Murali R. Jhanwar-Uniyal M. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 2006 26 2A 1177 1181 16619521
    [Google Scholar]
  126. Yuan Z. Long C. Junming T. Qihuan L. Youshun Z. Chan Z. Quercetin-induced apoptosis of HL-60 cells by reducing PI3K/Akt. Mol. Biol. Rep. 2012 39 7 7785 7793 10.1007/s11033‑012‑1621‑0 22555976
    [Google Scholar]
  127. Granato M. Rizzello C. Gilardini Montani M.S. Cuomo L. Vitillo M. Santarelli R. Gonnella R. D’Orazi G. Faggioni A. Cirone M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem. 2017 41 124 136 10.1016/j.jnutbio.2016.12.011 28092744
    [Google Scholar]
  128. Yan W. Ma X. Zhao X. Zhang S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des. Devel. Ther. 2018 12 3961 3972 10.2147/DDDT.S181939 30510404
    [Google Scholar]
  129. Rajendran P. Ammar R.B. Al-Saeedi F.J. Mohamed M.E. ElNaggar M.A. Al-Ramadan S.Y. Bekhet G.M. Soliman A.M. Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In vitro and in vivo studies. Int. J. Mol. Sci. 2020 22 1 217 10.3390/ijms22010217 33379332
    [Google Scholar]
  130. Li L. Lin Z. Yuan J. Li P. Wang Q. Cho N. Wang Y. Lin Z. The neuroprotective mechanisms of naringenin: Inhibition of apoptosis through the PI3K/AKT pathway after hypoxic-ischemic brain damage. J. Ethnopharmacol. 2024 318 Pt A 116941 10.1016/j.jep.2023.116941 37480970
    [Google Scholar]
  131. Jiang H. Zhang L. Kuo J. Kuo K. Gautam S.C. Groc L. Rodriguez A.I. Koubi D. Jackson Hunter T. Corcoran G.B. Seidman M.D. Levine R.A. Resveratrol-induced apoptotic death in human U251 glioma cells. Mol. Cancer Ther. 2005 4 4 554 561 10.1158/1535‑7163.MCT‑04‑0056 15827328
    [Google Scholar]
  132. Zeng Y.H. Zhou L.Y. Chen Q.Z. Li Y. Shao Y. Ren W.Y. Liao Y.P. Wang H. Zhu J.H. Huang M. He F. Wang J. Wu K. He B.C. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncol. Rep. 2017 38 1 456 464 10.3892/or.2017.5662 28534975
    [Google Scholar]
  133. Yang M.D. Sun Y. Zhou W.J. Xie X.Z. Zhou Q.M. Lu Y.Y. Su S.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer MDA-MB-231 cell models in vivo and in vitro. Molecules 2021 26 8 2204 10.3390/molecules26082204 33921192
    [Google Scholar]
  134. Lim H.S. Kim O.S. Kim B.Y. Jeong S.J. Apigetrin from Scutellaria baicalensis Georgi Inhibits Neuroinflammation in BV-2 Microglia and Exerts Neuroprotective Effect in HT22 Hippocampal Cells. J. Med. Food 2016 19 11 1032 1040 10.1089/jmf.2016.0074 27845861
    [Google Scholar]
  135. Wang N. Yi W.J. Tan L. Zhang J.H. Xu J. Chen Y. Qin M. Yu S. Guan J. Zhang R. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense. In Vitro Cell. Dev. Biol. Anim. 2017 53 6 554 563 10.1007/s11626‑017‑0135‑4 28181104
    [Google Scholar]
  136. Liu M.M. Ma R.H. Ni Z.J. Thakur K. Cespedes-Acuña C.L. Jiang L. Wei Z.J. Apigenin 7-O-glucoside promotes cell apoptosis through the PTEN/PI3K/AKT pathway and inhibits cell migration in cervical cancer HeLa cells. Food Chem. Toxicol. 2020 146 111843 10.1016/j.fct.2020.111843 33152472
    [Google Scholar]
  137. Kim S.M. Vetrivel P. Ha S.E. Kim H.H. Kim J.A. Kim G.S. Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell. J. Nutr. Biochem. 2020 83 108427 10.1016/j.jnutbio.2020.108427 32559585
    [Google Scholar]
  138. Minato K. Miyake Y. Fukumoto S. Yamamoto K. Kato Y. Shimomura Y. Osawa T. Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver. Life Sci. 2003 72 14 1609 1616 10.1016/S0024‑3205(02)02443‑8 12551749
    [Google Scholar]
  139. Zeng B. Chen K. Du P. Wang S.S. Ren B. Ren Y.L. Yan H.S. Liang Y. Wu F.H. Phenolic Compounds from Clinopodium chinense ( Benth. ) O. Kuntze and Their Inhibitory Effects on α ‐Glucosidase and Vascular Endothelial Cells Injury. Chem. Biodivers. 2016 13 5 596 601 10.1002/cbdv.201500187 27088891
    [Google Scholar]
  140. He P. Yan S. Zheng J. Gao Y. Zhang S. Liu Z. Liu X. Xiao C. Eriodictyol Attenuates LPS-Induced Neuroinflammation, Amyloidogenesis, and Cognitive Impairments via the Inhibition of NF-κB in Male C57BL/6J Mice and BV2 Microglial Cells. J. Agric. Food Chem. 2018 66 39 10205 10214 10.1021/acs.jafc.8b03731 30208700
    [Google Scholar]
  141. Kwon E.Y. Choi M.S. Dietary Eriodictyol Alleviates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obese Mice. Int. J. Mol. Sci. 2019 20 5 1227 10.3390/ijms20051227 30862092
    [Google Scholar]
  142. Lv P. Yu J. Xu X. Lu T. Xu F. Eriodictyol inhibits high glucose‐induced oxidative stress and inflammation in retinal ganglial cells. J. Cell. Biochem. 2019 120 4 5644 5651 10.1002/jcb.27848 30317656
    [Google Scholar]
  143. Xie G. Meng X. Wang F. Bao Y. Huo J. Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2. Oncotarget 2017 8 40 68668 68674 10.18632/oncotarget.19822 28978146
    [Google Scholar]
  144. Liu Y. Yan X. Eriodictyol inhibits survival and inflammatory responses and promotes apoptosis in rheumatoid arthritis fibroblast‐like synoviocytes through AKT/FOXO1 signaling. J. Cell. Biochem. 2019 120 9 14628 14635 10.1002/jcb.28724 31009103
    [Google Scholar]
  145. Li W. Du Q. Li X. Zheng X. Lv F. Xi X. Huang G. Yang J. Liu S. Eriodictyol Inhibits Proliferation, Metastasis and Induces Apoptosis of Glioma Cells via PI3K/Akt/NF-KB Signaling Pathway. Front. Pharmacol. 2020 ••• 11
    [Google Scholar]
  146. Canada A.T. Giannella E. Nguyen T.D. Mason R.P. The production of reactive oxygen species by dietary flavonols. Free Radic. Biol. Med. 1990 9 5 441 449 10.1016/0891‑5849(90)90022‑B 1963417
    [Google Scholar]
  147. Miean K.H. Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001 49 6 3106 3112 10.1021/jf000892m 11410016
    [Google Scholar]
  148. Ye C. Zhang C. Huang H. Yang B. Xiao G. Kong D. Tian Q. Song Q. Song Y. Tan H. Wang Y. Zhou T. Zi X. Sun Y. The Natural Compound Myricetin Effectively Represses the Malignant Progression of Prostate Cancer by Inhibiting PIM1 and Disrupting the PIM1/CXCR4 Interaction. Cell. Physiol. Biochem. 2018 48 3 1230 1244 10.1159/000492009 30045021
    [Google Scholar]
  149. Rodgers E.H. Grant M.H. The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells. Chem. Biol. Interact. 1998 116 3 213 228 10.1016/S0009‑2797(98)00092‑1 9920463
    [Google Scholar]
  150. Feng J. Chen X. Wang Y. Du Y. Sun Q. Zang W. Zhao G. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol. Cell. Biochem. 2015 408 1-2 163 170 10.1007/s11010‑015‑2492‑1 26112905
    [Google Scholar]
  151. Zhang S. Wang L. Liu H. Zhao G. Ming L. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn. Pathol. 2014 9 1 68 10.1186/1746‑1596‑9‑68 24650056
    [Google Scholar]
  152. Zhu M. Zhang P. Jiang M. Yu S. Wang L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. BMC Complementary Medicine and Therapies 2020 20 1 209 10.1186/s12906‑020‑02965‑w 32631392
    [Google Scholar]
  153. Ahmed S. Khan H. Aschner M. Hasan M.M. Hassan S.T.S. Therapeutic potential of naringin in neurological disorders. Food Chem. Toxicol. 2019 132 110646 10.1016/j.fct.2019.110646 31252025
    [Google Scholar]
  154. Yoshinaga A. Kajiya N. Oishi K. Kamada Y. Ikeda A. Chigwechokha P.K. Kibe T. Kishida M. Kishida S. Komatsu M. Shiozaki K. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation. Eur. J. Pharmacol. 2016 782 21 29 10.1016/j.ejphar.2016.04.035 27105818
    [Google Scholar]
  155. Li H. Yang B. Huang J. Xiang T. Yin X. Wan J. Luo F. Zhang L. Li H. Ren G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol. Lett. 2013 220 3 219 228 10.1016/j.toxlet.2013.05.006 23694763
    [Google Scholar]
  156. Lin R. Hu X. Chen S. Shi Q. Chen H. Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells. Acta Biochim. Pol. 2020 67 2 181 188 32343512
    [Google Scholar]
  157. Ramesh E. Alshatwi A.A. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem. Toxicol. 2013 51 97 105 10.1016/j.fct.2012.07.033 22847135
    [Google Scholar]
  158. Raha S. Yumnam S. Hong G.E. Lee H.J. Saralamma V.V.G. Park H.S. Heo J.D. Lee S.J. Kim E.H. Kim J.A. Kim G.S. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int. J. Oncol. 2015 47 3 1061 1069 10.3892/ijo.2015.3095 26201693
    [Google Scholar]
  159. Saleem M. Afaq F. Adhami V.M. Mukhtar H. Lupeol modulates NF-κB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 2004 23 30 5203 5214 10.1038/sj.onc.1207641 15122342
    [Google Scholar]
  160. Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009 285 2 109 115 10.1016/j.canlet.2009.04.033 19464787
    [Google Scholar]
  161. Nagaraj M. Sunitha S. Varalakshmi P. Effect of lupeol, a pentacyclic triterpene, on the lipid peroxidation and antioxidant status in rat kidney after chronic cadmium exposure. J. Appl. Toxicol. 2000 20 5 413 417 10.1002/1099‑1263(200009/10)20:5<413::AID‑JAT706>3.0.CO;2‑Y 11139172
    [Google Scholar]
  162. Yang J. Ren X. Zhang L. Li Y. Cheng B. Xia J. Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway. Biomed. Pharmacother. 2018 100 226 232 10.1016/j.biopha.2018.02.011 29432993
    [Google Scholar]
  163. Reddy D. Ghosh P. Kumavath R. Strophanthidin Attenuates MAPK, PI3K/AKT/mTOR, and Wnt/β-Catenin Signaling Pathways in Human Cancers. Front. Oncol. 2020 9 1469 10.3389/fonc.2019.01469 32010609
    [Google Scholar]
  164. Iyer A.K.V. Zhou M. Azad N. Elbaz H. Wang L. Rogalsky D.K. Rojanasakul Y. O’Doherty G.A. Langenhan J.M. A Direct Comparison of the Anticancer Activities of Digitoxin MeON-Neoglycosides and O -Glycosides. ACS Med. Chem. Lett. 2010 1 7 326 330 10.1021/ml1000933 21103068
    [Google Scholar]
  165. Ghanem A. Emara H.A. Muawia S. Abd El Maksoud A.I. Al-Karmalawy A.A. Elshal M.F. Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: in vitro and molecular docking studies. New J. Chem. 2020 44 40 17374 17381 10.1039/D0NJ04088F
    [Google Scholar]
  166. Lv C. Zeng H.W. Wang J.X. Yuan X. Zhang C. Fang T. Yang P.M. Wu T. Zhou Y.D. Nagle D.G. Zhang W.D. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Dis. 2018 9 2 165 10.1038/s41419‑017‑0247‑5 29416003
    [Google Scholar]
  167. Lin R. Wang W.R. Liu J.T. Yang G.D. Han C.J. Protective effect of tanshinone IIA on human umbilical vein endothelial cell injured by hydrogen peroxide and its mechanism. J. Ethnopharmacol. 2006 108 2 217 222 10.1016/j.jep.2006.05.004 16797899
    [Google Scholar]
  168. Jin U.H. Suh S.J. Chang H.W. Son J.K. Lee S.H. Son K.H. Chang Y.C. Kim C.H. Tanshinone IIA from Salvia miltiorrhiza BUNGE inhibits human aortic smooth muscle cell migration and MMP‐9 activity through AKT signaling pathway. J. Cell. Biochem. 2008 104 1 15 26 10.1002/jcb.21599 17979138
    [Google Scholar]
  169. Cheng G. Li L. Li Q. Lian S. Chu H. Ding Y. Li C. Leng Y. β-elemene suppresses tumor metabolism and stem cell-like properties of non-small cell lung cancer cells by regulating PI3K/AKT/mTOR signaling. Am. J. Cancer Res. 2022 12 4 1535 1555 35530288
    [Google Scholar]
  170. Liu S. Zhou L. Zhao Y. Yuan Y. β-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway. Oncol. Rep. 2015 34 2 943 951 10.3892/or.2015.4050 26062577
    [Google Scholar]
  171. Zhan Y.H. Liu J. Qu X.J. Hou K.Z. Wang K.F. Liu Y.P. Wu B. β-Elemene induces apoptosis in human renal-cell carcinoma 786-0 cells through inhibition of MAPK/ERK and PI3K/Akt/ mTOR signalling pathways. Asian Pac. J. Cancer Prev. 2012 13 6 2739 2744 10.7314/APJCP.2012.13.6.2739 22938451
    [Google Scholar]
  172. Li C.L. Chang L. Guo L. Zhao D. Liu H.B. Wang Q.S. Zhang P. Du W.Z. Liu X. Zhang H.T. Liu Y. Zhang Y. Xie J.H. Ming J.G. Cui Y.Q. Sun Y. Zhang Z.R. Jiang C.L. β-elemene induces caspase-dependent apoptosis in human glioma cells in vitro through the upregulation of Bax and Fas/ FasL and downregulation of Bcl-2. Asian Pac. J. Cancer Prev. 2015 15 23 10407 10412 10.7314/APJCP.2014.15.23.10407 25556484
    [Google Scholar]
  173. Aggarwal B.B. Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol. Sci. 2009 30 2 85 94 10.1016/j.tips.2008.11.002 19110321
    [Google Scholar]
  174. Esatbeyoglu T. Huebbe P. Ernst I.M.A. Chin D. Wagner A.E. Rimbach G. Curcumin--from molecule to biological function. Angew. Chem. Int. Ed. 2012 51 22 5308 5332 10.1002/anie.201107724 22566109
    [Google Scholar]
  175. Seo B.R. Min K. Cho I.J. Kim S.C. Kwon T.K. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability. PLoS One 2014 9 4 e95588 10.1371/journal.pone.0095588 24743574
    [Google Scholar]
  176. Patridge E. Gareiss P. Kinch M.S. Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today 2016 21 2 204 207 10.1016/j.drudis.2015.01.009 25617672
    [Google Scholar]
  177. Veeraraghavan J. Natarajan M. Lagisetty P. Awasthi V. Herman T.S. Aravindan N. Impact of curcumin, raspberry extract, and neem leaf extract on rel protein-regulated cell death/radiosensitization in pancreatic cancer cells. Pancreas 2011 40 7 1107 1119 10.1097/MPA.0b013e31821f677d 21697760
    [Google Scholar]
  178. González-Sarrías A. Espín J.C. Tomás-Barberán F.A. García-Conesa M.T. Gene expression, cell cycle arrest and MAPK signalling regulation in Caco‐2 cells exposed to ellagic acid and its metabolites, urolithins. Mol. Nutr. Food Res. 2009 53 6 686 698 10.1002/mnfr.200800150 19437480
    [Google Scholar]
  179. Kim J.Y. Choi Y.J. Kim H.J. Determining the effect of ellagic acid on the proliferation and migration of pancreatic cancer cell lines. Transl. Cancer Res. 2021 10 1 424 433 10.21037/tcr‑20‑2446 35116272
    [Google Scholar]
  180. Lei F. Xing D.M. Xiang L. Zhao Y.N. Wang W. Zhang L.J. Du L.J. Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003 796 1 189 194 10.1016/S1570‑0232(03)00610‑X 14552830
    [Google Scholar]
  181. Heilman J. Andreux P. Tran N. Rinsch C. Blanco-Bose W. Safety assessment of Urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid. Food Chem. Toxicol. 2017 108 Pt A 289 297 10.1016/j.fct.2017.07.050 28757461
    [Google Scholar]
  182. Gossage L. Eisen T. Targeting multiple kinase pathways: a change in paradigm. Clin. Cancer Res. 2010 16 7 1973 1978 10.1158/1078‑0432.CCR‑09‑3182 20215532
    [Google Scholar]
  183. Tomás-Barberán F.A. González-Sarrías A. García-Villalba R. Núñez-Sánchez M.A. Selma M.V. García-Conesa M.T. Espín J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. 2017 61 1 1500901 10.1002/mnfr.201500901 27158799
    [Google Scholar]
  184. Totiger T.M. Srinivasan S. Jala V.R. Lamichhane P. Dosch A.R. Gaidarski A.A. III Joshi C. Rangappa S. Castellanos J. Vemula P.K. Chen X. Kwon D. Kashikar N. VanSaun M. Merchant N.B. Nagathihalli N.S. Urolithin A, a Novel Natural Compound to Target PI3K/AKT/mTOR Pathway in Pancreatic Cancer. Mol. Cancer Ther. 2019 18 2 301 311 10.1158/1535‑7163.MCT‑18‑0464 30404927
    [Google Scholar]
  185. Dienstmann R. Rodon J. Serra V. Tabernero J. Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther. 2014 13 5 1021 1031 10.1158/1535‑7163.MCT‑13‑0639 24748656
    [Google Scholar]
  186. Clark C.E. Beatty G.L. Vonderheide R.H. Immunosurveillance of pancreatic adenocarcinoma: Insights from genetically engineered mouse models of cancer. Cancer Lett. 2009 279 1 1 7 10.1016/j.canlet.2008.09.037 19013709
    [Google Scholar]
  187. Piotrowska H. Kucinska M. Murias M. Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutat. Res. Rev. Mutat. Res. 2012 750 1 60 82 10.1016/j.mrrev.2011.11.001 22108298
    [Google Scholar]
  188. Rossi M. Caruso F. Antonioletti R. Viglianti A. Traversi G. Leone S. Basso E. Cozzi R. Scavenging of hydroxyl radical by resveratrol and related natural stilbenes after hydrogen peroxide attack on DNA. Chem. Biol. Interact. 2013 206 2 175 185 10.1016/j.cbi.2013.09.013 24075811
    [Google Scholar]
  189. Kukreja A. Piceatannol: A potential futuristic natural stilbene as fetal haemoglobin inducer. J Clin Diagn Res. 2013 7 12 3028 31
    [Google Scholar]
  190. Hsieh T.C. Lin C.Y. Lin H.Y. Wu J.M. AKT/mTOR as Novel Targets of Polyphenol Piceatannol Possibly Contributing to Inhibition of Proliferation of Cultured Prostate Cancer Cells. ISRN Urol. 2012 2012 1 8 10.5402/2012/272697 22567414
    [Google Scholar]
  191. Wang B. Li J. Piceatannol Suppresses the Proliferation and Induced Apoptosis of Osteosarcoma Cells Through PI3K/AKT/mTOR Pathway. Cancer Manag. Res. 2020 12 2631 2640 10.2147/CMAR.S238173 32368141
    [Google Scholar]
  192. Shahrzad S. Aoyagi K. Winter A. Koyama A. Bitsch I. Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutr. 2001 131 4 1207 1210 10.1093/jn/131.4.1207 11285327
    [Google Scholar]
  193. Abdelwahed A. Bouhlel I. Skandrani I. Valenti K. Kadri M. Guiraud P. Steiman R. Mariotte A.M. Ghedira K. Laporte F. Dijoux-Franca M.G. Chekir-Ghedira L. Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Chem. Biol. Interact. 2007 165 1 1 13 10.1016/j.cbi.2006.10.003 17129579
    [Google Scholar]
  194. Velderrain-Rodríguez G. Torres-Moreno H. Villegas-Ochoa M. Ayala-Zavala J. Robles-Zepeda R. Wall-Medrano A. González-Aguilar G. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells. Molecules 2018 23 3 695 10.3390/molecules23030695 29562699
    [Google Scholar]
  195. Kim S.W. Han Y.W. Lee S.T. Jeong H.J. Kim S.H. Kim I.H. Lee S.O. Kim D.G. Kim S.H. Kim S.Z. Park W.H. A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis. Mol. Carcinog. 2008 47 2 114 125 10.1002/mc.20369 17620290
    [Google Scholar]
  196. Sorrentino E. Succi M. Tipaldi L. Pannella G. Maiuro L. Sturchio M. Coppola R. Tremonte P. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int. J. Food Microbiol. 2018 266 183 189 10.1016/j.ijfoodmicro.2017.11.026 29227905
    [Google Scholar]
  197. Lee J.H. Oh M. Seok J. Kim S. Lee D. Bae G. Bae H.I. Bae S. Hong Y.M. Kwon S.O. Lee D.H. Song C.S. Mun J. Chung M. Kim K. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection. Viruses 2016 8 6 157 10.3390/v8060157 27275830
    [Google Scholar]
  198. Dludla P.V. Nkambule B.B. Jack B. Mkandla Z. Mutize T. Silvestri S. Orlando P. Tiano L. Louw J. Mazibuko-Mbeje S.E. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018 11 1 23 10.3390/nu11010023 30577684
    [Google Scholar]
  199. You B.R. Moon H.J. Han Y.H. Park W.H. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem. Toxicol. 2010 48 5 1334 1340 10.1016/j.fct.2010.02.034 20197077
    [Google Scholar]
  200. Subramanian A.P. Jaganathan S.K. Mandal M. Supriyanto E. Muhamad I.I. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J. Gastroenterol. 2016 22 15 3952 3961 10.3748/wjg.v22.i15.3952 27099438
    [Google Scholar]
  201. Tang H.M. Cheung P.C.K. Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features. Toxins (Basel) 2019 11 9 492 10.3390/toxins11090492 31455047
    [Google Scholar]
  202. Phan A.N.H. Hua T.N.M. Kim M.K. Vo V.T.A. Choi J.W. Kim H.W. Rho J.K. Kim K.W. Jeong Y. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget 2016 7 34 54702 54713 10.18632/oncotarget.10581 27419630
    [Google Scholar]
  203. Liao C-C. Chen S-C. Huang H-P. Wang C-J. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). Yao Wu Shi Pin Fen Xi 2018 26 2 620 627 29567231
    [Google Scholar]
  204. Kang D.Y. Sp N. Jo E.S. Rugamba A. Hong D.Y. Lee H.G. Yoo J.S. Liu Q. Jang K.J. Yang Y.M. The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells. Cancers (Basel) 2020 12 3 727 10.3390/cancers12030727 32204508
    [Google Scholar]
  205. Chen J. Jiang C.C. Jin L. Zhang X.D. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann. Oncol. 2016 27 3 409 416 10.1093/annonc/mdv615 26681673
    [Google Scholar]
  206. Lúcio A.S.S.C. Da Silva Almeida J.R.G. Barbosa-Filho J.M. Pita J.C.L.R. Branco M.V.S.C. De Fátima Formiga Melo Diniz M. De Fátima Agra M. Da-Cunha E.V.L. Da Silva M.S. Tavares J.F. Azaphenanthrene alkaloids with antitumoral activity from Anaxagorea dolichocarpa Sprague & Sandwith (Annonaceae). Molecules 2011 16 8 7125 7131 10.3390/molecules16087125 21860364
    [Google Scholar]
  207. Bray S.J. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 17 11 722 735 10.1038/nrm.2016.94 27507209
    [Google Scholar]
  208. Sulzmaier F.J. Jean C. Schlaepfer D.D. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 2014 14 9 598 610 10.1038/nrc3792 25098269
    [Google Scholar]
  209. Brendan D.M. Toker A. AKT/PKB Signaling: Navigating the Network Brendan. Physiol. Behav. 2011 176 139 148
    [Google Scholar]
  210. Saxton R.A. Sabatini D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017 169 2 361 371 10.1016/j.cell.2017.03.035 28388417
    [Google Scholar]
  211. Vousden K.H. Prives C. Blinded by the Light: The Growing Complexity of p53. Cell 2009 137 3 413 431 10.1016/j.cell.2009.04.037 19410540
    [Google Scholar]
  212. Hardie D.G. Ross F.A. Hawley S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012 13 4 251 262 10.1038/nrm3311 22436748
    [Google Scholar]
  213. Bhuia M.S. Wilairatana P. Chowdhury R. Rakib A.I. Kamli H. Shaikh A. Coutinho H.D.M. Islam M.T. Anticancer Potentials of the Lignan Magnolin: A Systematic Review. Molecules 2023 28 9 3671 10.3390/molecules28093671 37175081
    [Google Scholar]
  214. Khan M.A. Jain V.K. Rizwanullah M. Ahmad J. Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov. Today 2019 24 11 2181 2191 10.1016/j.drudis.2019.09.001 31520748
    [Google Scholar]
  215. Cheaib B. Auguste A. Leary A. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. Chin. J. Cancer 2015 34 1 4 16 10.5732/cjc.014.10289 25556614
    [Google Scholar]
  216. Cerma K. Piacentini F. Moscetti L. Barbolini M. Canino F. Tornincasa A. Caggia F. Cerri S. Molinaro A. Dominici M. Omarini C. Targeting PI3K/AKT/mTOR Pathway in Breast Cancer: From Biology to Clinical Challenges. Biomedicines 2023 11 1 109 10.3390/biomedicines11010109 36672617
    [Google Scholar]
  217. Sanaei M.J. Razi S. Pourbagheri-Sigaroodi A. Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl. Oncol. 2022 18 101364 10.1016/j.tranon.2022.101364 35168143
    [Google Scholar]
  218. Fruman D.A. Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 2014 13 2 140 156 10.1038/nrd4204 24481312
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673325229240928040758
Loading
/content/journals/cmc/10.2174/0109298673325229240928040758
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pharmacotherapy ; drug design ; natural product ; Cancer therapy ; molecular targets
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test