Skip to content
2000
image of Mitochondrial Dysfunction Associated with mtDNA Mutation: Mitochondrial Genome Editing in Atherosclerosis Research

Abstract

Background

Atherosclerosis is a complex cardiovascular disease often associated with mitochondrial dysfunction, which can lead to various cellular and metabolic abnormalities. Within the mitochondrial genome, specific mutations have been implicated in contributing to mitochondrial dysfunction. Atherosclerosis-associated m.15059G>A mutation has been of particular interest due to its potential role in altering mitochondrial function and cellular health.

Objective

This study aims to investigate the role of the atherosclerosis-associated m.15059G>A mutation in the development of mitochondrial dysfunction in monocyte-like cells.

Methods

Monocyte-like cytoplasmic hybrid cell line TC-HSMAM1, which contains the m.15059G>A mutation in mtDNA, was used. The MitoCas9 vector was utilized to eliminate mtDNA copies carrying the m.15059G>A mutation from TC-HSMAM1 cybrids. Mitochondrial membrane potential, generation of reactive oxygen species, and lipid peroxidation levels were assessed using flow cytometry. Cellular reduced glutathione levels were assessed using the confocal microscopy. The oxygen consumption rate was measured using polarographic oxygen respirometry.

Results

The elimination of the m.15059G>A mutation resulted in a significant increase in mitochondrial membrane potential and improved mitochondrial efficiency while also causing a decrease in the generation of reactive oxygen species, lipid peroxidation, as well as cellular bioenergetic parameters, such as proton leak and non-mitochondrial oxygen consumption. At the same time, no changes were found in the intracellular antioxidant system after the mitochondrial genome editing.

Conclusions

The presence of the m.15059G>A mutation contributes to mitochondrial dysfunction by reducing mitochondrial membrane potential, increasing the generation of reactive oxygen species and lipid peroxidation, and altering mitochondrial bioenergetics. Elimination of the mtDNA containing atherogenic mutation leads to an improvement in mitochondrial function.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323639240926095549
2024-10-11
2024-11-26
Loading full text...

Full text loading...

References

  1. Xu M. Wang W. Cheng J. Qu H. Xu M. Wang L. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed. Pharmacother. 2024 174 116587 10.1016/j.biopha.2024.116587 38636397
    [Google Scholar]
  2. Xia D. Liu Y. Wu P. Wei D. Current advances of mitochondrial dysfunction and cardiovascular disease and promising therapeutic strategies. Am. J. Pathol. 2023 193 10 1485 1500 10.1016/j.ajpath.2023.06.013 37481069
    [Google Scholar]
  3. Ciccarelli G. Conte S. Cimmino G. Maiorano P. Morrione A. Giordano A. Mitochondrial dysfunction: The hidden player in the pathogenesis of atherosclerosis? Int. J. Mol. Sci. 2023 24 2 1086 10.3390/ijms24021086 36674602
    [Google Scholar]
  4. Prajapat S.K. Maharana K.C. Singh S. Mitochondrial dysfunction in the pathogenesis of endothelial dysfunction. Mol. Cell. Biochem. 2023 10.1007/s11010‑023‑04835‑8 37642880
    [Google Scholar]
  5. Lorca R. Aparicio A. Gómez J. Álvarez-Velasco R. Pascual I. Avanzas P. González-Urbistondo F. Alen A. Vázquez-Coto D. González-Fernández M. Mitochondrial heteroplasmy as a marker for premature coronary artery disease: Analysis of the poly-C tract of the control region sequence. J. Clin. Med. 2023 12 2133 10.3390/jcm12062133
    [Google Scholar]
  6. Rocca C. Soda T. De Francesco E.M. Fiorillo M. Moccia F. Viglietto G. Angelone T. Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J. Transl. Med. 2023 21 1 635 10.1186/s12967‑023‑04498‑5 37726810
    [Google Scholar]
  7. Yu E.P.K. Reinhold J. Yu H. Starks L. Uryga A.K. Foote K. Finigan A. Figg N. Pung Y.F. Logan A. Murphy M.P. Bennett M. Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler. Thromb. Vasc. Biol. 2017 37 12 2322 2332 10.1161/ATVBAHA.117.310042 28970293
    [Google Scholar]
  8. Oliveira H.C.F. Vercesi A.E. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol. Aspects Med. 2020 71 100840 10.1016/j.mam.2019.100840 31882067
    [Google Scholar]
  9. Docherty C.K. Carswell A. Friel E. Mercer J.R. Impaired mitochondrial respiration in human carotid plaque atherosclerosis: A potential role for Pink1 in vascular smooth muscle cell energetics. Atherosclerosis 2018 268 1 11 10.1016/j.atherosclerosis.2017.11.009 29156421
    [Google Scholar]
  10. Libby P. The changing landscape of atherosclerosis. Nature 2021 592 7855 524 533 10.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  11. Shemiakova T. Ivanova E. Grechko A.V. Gerasimova E.V. Sobenin I.A. Orekhov A.N. Mitochondrial dysfunction and dna damage in the context of pathogenesis of atherosclerosis. Biomedicines 2020 8 6 166 10.3390/biomedicines8060166 32570831
    [Google Scholar]
  12. Peng W. Cai G. Xia Y. Chen J. Wu P. Wang Z. Li G. Wei D. Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol. 2019 38 7 597 606 10.1089/dna.2018.4552 31095428
    [Google Scholar]
  13. Tolstik T.V. Kirichenko T.V. Bogatyreva A.I. Markina Y.V. Kalmykov V.A. Markin A.M. The relationship between mitochondrial genome mutations in monocytes and the development of obesity and coronary heart disease. Front. Biosci. 2024 16 10.31083/j.fbs1601006
    [Google Scholar]
  14. Tolstik T.V. Kirichenko T.V. Markin A.M. Bogatyreva A.I. Markina Y.V. Kiseleva D.G. Shaposhnikova N.N. Starodubova A.V. Orekhov A.N. The association of TNF-alpha secretion and mtDNA copy number in CD14+ monocytes of patients with obesity and CHD. Front. Mol. Biosci. 2024 11 1362955 10.3389/fmolb.2024.1362955 38572445
    [Google Scholar]
  15. Orekhov A.N. Zhelankin A.V. Kolmychkova K.I. Mitrofanov K.Y. Kubekina M.V. Ivanova E.A. Sobenin I.A. Susceptibility of monocytes to activation correlates with atherogenic mitochondrial DNA mutations. Exp. Mol. Pathol. 2015 99 3 672 676 10.1016/j.yexmp.2015.11.006 26551079
    [Google Scholar]
  16. Sobenin I.A. Sazonova M.A. Postnov A.Y. Bobryshev Y.V. Orekhov A.N. Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta. Clin. Dev. Immunol. 2012 2012 1 5 10.1155/2012/832464 22997526
    [Google Scholar]
  17. Orekhov A.N. Nikiforov N.G. Omelchenko A.V. Sinyov V.V. Sobenin I.A. Vinokurov A.Y. Orekhova V.A. The role of mitochondrial mutations in chronification of inflammation: Hypothesis and overview of own data. Life 2022 12 8 1153 10.3390/life12081153 36013333
    [Google Scholar]
  18. Sazonova M.A. Sinyov V.V. Barinova V.A. Ryzhkova A.I. Zhelankin A.V. Postnov A.Y. Sobenin I.A. Bobryshev Y.V. Orekhov A.N. Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta. BioMed Res. Int. 2015 2015 1 9 10.1155/2015/825468 25834827
    [Google Scholar]
  19. Mitrofanov K.Y. Zhelankin A.V. Shiganova G.M. Sazonova M.A. Bobryshev Y.V. Postnov A.Y. Sobenin I А I.A. Orekhov A.N. Analysis of mitochondrial DNA heteroplasmic mutations A1555G, C3256T, T3336C, С5178А, G12315A, G13513A, G14459A, G14846А and G15059A in CHD patients with the history of myocardial infarction. Exp. Mol. Pathol. 2016 100 1 87 91 10.1016/j.yexmp.2015.12.003 26654794
    [Google Scholar]
  20. Sobenin I.A. Sazonova M.A. Postnov A.Y. Bobryshev Y.V. Orekhov A.N. Changes of mitochondria in atherosclerosis: Possible determinant in the pathogenesis of the disease. Atherosclerosis 2013 227 2 283 288 10.1016/j.atherosclerosis.2013.01.006 23395464
    [Google Scholar]
  21. Sobenin I.A. Myasoedova V.A. Kirichenko T.V. Orekhova V.A. Khasanova Z.B. Sinyov V.V. Melnichenko A.A. Grechko A.V. Orekhov A.N. Profiling of risk of subclinical atherosclerosis: Possible interplay of genetic and environmental factors as the update of conventional approach. Vessel Plus 2019 2019 15 10.20517/2574‑1209.2019.09
    [Google Scholar]
  22. Kirichenko T.V. Ryzhkova A.I. Sinyov V.V. Sazonova M.D. Orekhova V.A. Karagodin V.P. Gerasimova E.V. Voevoda M.I. Orekhov A.N. Ragino Y.I. Sobenin I.A. Sazonova M.A. Impact of mitochondrial dna mutations on carotid intima-media thickness in the Novosibirsk region. Life 2020 10 9 160 10.3390/life10090160 32842589
    [Google Scholar]
  23. Andreu A.L. Bruno C. Dunne T.C. Tanji K. Shanske S. Sue C.M. Krishna S. Hadjigeorgiou G.M. Shtilbans A. Bonilla E. DiMauro S. A nonsense mutation (G15059A) in the cytochromeb gene in a patient with exercise intolerance and myoglobinuria. Ann. Neurol. 1999 45 1 127 130 10.1002/1531‑8249(199901)45:1<127::AID‑ART20>3.0.CO;2‑Y 9894887
    [Google Scholar]
  24. Szczepanowska J. Malinska D. Wieckowski M.R. Duszynski J. Effect of mtDNA point mutations on cellular bioenergetics. Biochim. Biophys. Acta Bioenerg. 2012 1817 10 1740 1746 10.1016/j.bbabio.2012.02.028 22406627
    [Google Scholar]
  25. Hu H. Lin Y. Xu X. Lin S. Chen X. Wang S. The alterations of mitochondrial DNA in coronary heart disease. Exp. Mol. Pathol. 2020 114 104412 10.1016/j.yexmp.2020.104412 32113905
    [Google Scholar]
  26. Orekhov A.N. Sinyov V.V. Vyssokikh M.Y. Manukhova L. Marey M.V. Angelova P.R. Omelchenko A.V. Vinokurov A.Y. Khasanova Z.B. Sobenin I.A. Relationship between cellular oxygen consumption and atherosclerosis-associated mitochondrial mutations (Variants of the Mitochondrial Genome). Curr. Med. Chem. 2024 31 10.2174/0109298673302002240605092523 38879762
    [Google Scholar]
  27. Li H. Shen L. Hu P. Huang R. Cao Y. Deng J. Yuan W. Liu D. Yang J. Gu H. Bai Y. Aging-associated mitochondrial DNA mutations alter oxidative phosphorylation machinery and cause mitochondrial dysfunctions. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 9 2266 2273 10.1016/j.bbadis.2017.05.022 28559044
    [Google Scholar]
  28. Piantadosi C.A. Mitochondrial DNA, oxidants, and innate immunity. Free Radic. Biol. Med. 2020 152 455 461 10.1016/j.freeradbiomed.2020.01.013 31958498
    [Google Scholar]
  29. Vendrov A.E. Lozhkin A. Hayami T. Levin J. Silveira Fernandes Chamon J. Abdel-Latif A. Runge M.S. Madamanchi N.R. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging. Front. Immunol. 2024 15 1410832 10.3389/fimmu.2024.1410832 38975335
    [Google Scholar]
  30. Khotina V.A. Ekta M.B. Baig M.S. Wu W.K. Grechko A.V. Sukhorukov V.N. Challenges of mitochondrial DNA editing in mammalian cells: focus on treatment of cardiovascular disease. Vessel Plus 2022 6 10.20517/2574‑1209.2022.28
    [Google Scholar]
  31. Hussain S.R.A. Yalvac M.E. Khoo B. Eckardt S. McLaughlin K.J. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. Front. Genet. 2021 12 627050 10.3389/fgene.2021.627050 33889176
    [Google Scholar]
  32. Bi R. Li Y. Xu M. Zheng Q. Zhang D.F. Li X. Ma G. Xiang B. Zhu X. Zhao H. Huang X. Zheng P. Yao Y.G. Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing. Innovation 2022 3 6 100329 10.1016/j.xinn.2022.100329 36275864
    [Google Scholar]
  33. Sukhorukov V.N. Kalmykov V.A. Khotina V.A. Omelchenko A.V. Orekhova V. Orekhov A.N. Mitochondrial DNA CRISPR/CAS9 editing: An approach to establishing the role of mitochondrial mutations in atherogenesis. Atherosclerosis 2022 355 53 10.1016/j.atherosclerosis.2022.06.385
    [Google Scholar]
  34. Sukhorukov V.N. Khotina V.A. Kalmykov V.A. Zhuravlev A.D. Sinyov V.V. Popov D.Y. Vinokurov A.Y. Sobenin I.A. Orekhov A.N. Mitochondrial genome editing: Exploring the possible relationship of the atherosclerosis-associated mutation m.15059G>A with defective mitophagy. J. Lipid Atheroscler. 2024 13 2 166 183 10.12997/jla.2024.13.2.166 38826184
    [Google Scholar]
  35. Sazonova M.A. Sinyov V.V. Ryzhkova A.I. Sazonova M.D. Khasanova Z.B. Shkurat T.P. Karagodin V.P. Orekhov A.N. Sobenin I.A. Creation of cybrid cultures containing mtdna mutations m.12315G>a and m.1555G>a, associated with atherosclerosis. Biomolecules 2019 9 9 499 10.3390/biom9090499 31540444
    [Google Scholar]
  36. Shim G. Kim M.G. Park J.Y. Oh Y.K. Application of cationic liposomes for delivery of nucleic acids. Asian J. Pharm. Sci. 2013 8 2 72 80 10.1016/j.ajps.2013.07.009
    [Google Scholar]
  37. Markov O.V. Mironova N.L. Maslov M.A. Shmendel E.V. Zenkova M.A. The use of mannose-containing liposomal compositions for the production of antitumor dendritic cell vaccines. Proceedings of the Biotechnology – to future medicine Novosibirsk 2017 75
    [Google Scholar]
  38. Strober W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2015 111 A3.B.1 A3.B.3 10.1002/0471142735.ima03bs111
    [Google Scholar]
  39. Louis K.S. Siegel A.C. Cell viability analysis using trypan blue: Manual and automated methods. В Methods in Molecular Biology Humana Press Inc 2011 7 12
    [Google Scholar]
  40. Chazotte B. Labeling mitochondria with MitoTracker dyes. Cold Spring Harb. Protoc. 2011 2011 8 pdb.prot5648 10.1101/pdb.prot5648 21807856
    [Google Scholar]
  41. Lyublinskaya O.G. Ivanova J.S. Pugovkina N.A. Kozhukharova I.V. Kovaleva Z.V. Shatrova A.N. Aksenov N.D. Zenin V.V. Kaulin Y.A. Gamaley I.A. Nikolsky N.N. Redox environment in stem and differentiated cells: A quantitative approach. Redox Biol. 2017 12 758 769 10.1016/j.redox.2017.04.016 28426982
    [Google Scholar]
  42. Lyamzaev K.G. Sumbatyan N.V. Nesterenko A.M. Kholina E.G. Voskoboynikova N. Steinhoff H.J. Mulkidjanian A.Y. Chernyak B.V. MitoCLox: A novel mitochondria-targeted fluorescent probe for tracing lipid peroxidation. Oxid. Med. Cell. Longev. 2019 2019 1 11 10.1155/2019/9710208 31827716
    [Google Scholar]
  43. Stevenson D. Wokosin D. Girkin J. Grant M.H. Measurement of the intracellular distribution of reduced glutathione in cultured rat hepatocytes using monochlorobimane and confocal laser scanning microscopy. Toxicol. In Vitro 2002 16 5 609 619 10.1016/S0887‑2333(02)00042‑5 12206828
    [Google Scholar]
  44. Chan Y.H. Ramji D.P. Investigation of mitochondrial bioenergetic profile and dysfunction in atherosclerosis. В Methods in Molecular Biology Humana Press Inc 2022 301 311
    [Google Scholar]
  45. Chacko B.K. Kramer P.A. Ravi S. Benavides G.A. Mitchell T. Dranka B.P. Ferrick D. Singal A.K. Ballinger S.W. Bailey S.M. Hardy R.W. Zhang J. Zhi D. Darley-Usmar V.M. The bioenergetic health index: A new concept in mitochondrial translational research. Clin. Sci. 2014 127 6 367 373 10.1042/CS20140101 24895057
    [Google Scholar]
  46. Zekonyte U. Bacman S.R. Smith J. Shoop W. Pereira C.V. Tomberlin G. Stewart J. Jantz D. Moraes C.T. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat. Commun. 2021 12 1 3210 10.1038/s41467‑021‑23561‑7 34050192
    [Google Scholar]
  47. Mok B.Y. de Moraes M.H. Zeng J. Bosch D.E. Kotrys A.V. Raguram A. Hsu F. Radey M.C. Peterson S.B. Mootha V.K. Mougous J.D. Liu D.R. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020 583 7817 631 637 10.1038/s41586‑020‑2477‑4 32641830
    [Google Scholar]
  48. McKenzie M. Liolitsa D. Akinshina N. Campanella M. Sisodiya S. Hargreaves I. Nirmalananthan N. Sweeney M.G. Abou-Sleiman P.M. Wood N.W. Hanna M.G. Duchen M.R. Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption. J. Biol. Chem. 2007 282 51 36845 36852 10.1074/jbc.M704158200 17940288
    [Google Scholar]
  49. Liu S. Liu S. He B. Li L. Li L. Wang J. Cai T. Chen S. Jiang H. OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential. EMBO Rep. 2021 22 4 e51606 10.15252/embr.202051606 33655635
    [Google Scholar]
  50. Chazotte B. Labeling mitochondria with fluorescent dyes for imaging. Cold Spring Harb. Protoc. 2009 2009 6 pdb.prot4948 10.1101/pdb.prot4948 20147179
    [Google Scholar]
  51. Kang J. Pervaiz S. Mitochondria: Redox metabolism and dysfunction. Biochem. Res. Int. 2012 2012 1 14 10.1155/2012/896751 22593827
    [Google Scholar]
  52. Ribas V. García-Ruiz C. Fernández-Checa J.C. Glutathione and mitochondria. Front. Pharmacol. 2014 5 151 10.3389/fphar.2014.00151 25024695
    [Google Scholar]
  53. Hahn A. Zuryn S. Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. Antioxidants 2019 8 9 392 10.3390/antiox8090392 31514455
    [Google Scholar]
  54. Shokolenko I.N. Wilson G.L. Alexeyev M.F. Aging: A mitochondrial DNA perspective, critical analysis and an update. World J. Exp. Med. 2014 4 4 46 57 10.5493/wjem.v4.i4.46 25414817
    [Google Scholar]
  55. Rana M. De Coo I. Diaz F. Smeets H. Moraes C.T. An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann. Neurol. 2000 48 5 774 781
    [Google Scholar]
  56. Dasgupta S. Hoque M.O. Upadhyay S. Sidransky D. Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Res. 2008 68 3 700 706 10.1158/0008‑5472.CAN‑07‑5532 18245469
    [Google Scholar]
  57. Kretzschmar C. Roolf C. Timmer K. Sekora A. Knübel G. Escobar H.M. Fuellen G. Ibrahim S.M. Tiedge M. Baltrusch S. Jaster R. Köhling R. Junghanss C. Polymorphisms of the murine mitochondrial ND4, CYTB and COX3 genes impact hematopoiesis during aging. Oncotarget 2016 7 46 74460 74472 10.18632/oncotarget.11952 27626489
    [Google Scholar]
  58. Ferreira A. V. Koeken V.A.C.M. Matzaraki V. Kostidis S. Alarcon-Barrera J.C. de Bree L.C.J. Moorlag S.J.C.F.M. Mourits V.P. Novakovic B. Giera M.A. Glutathione metabolism contributes to the induction of trained immunity. Cells 2021 10 971 10.3390/cells10050971
    [Google Scholar]
  59. Green R.M. Graham M. O’Donovan M.R. Chipman J.K. Hodges N.J. Subcellular compartmentalization of glutathione: Correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 2006 21 6 383 390 10.1093/mutage/gel043 17012304
    [Google Scholar]
  60. Liu T. Sun L. Zhang Y. Wang Y. Zheng J. Imbalanced GSH/ROS and sequential cell death. J. Biochem. Mol. Toxicol. 2022 36 1 e22942 10.1002/jbt.22942 34725879
    [Google Scholar]
  61. Teskey G. Abrahem R. Cao R. Gyurjian K. Islamoglu H. Lucero M. Martinez A. Paredes E. Salaiz O. Robinson B. Venketaraman V. Glutathione as a marker for human disease. Adv. Clin. Chem. 2018 87 141 159 10.1016/bs.acc.2018.07.004 30342710
    [Google Scholar]
  62. Carta S. Tassi S. Pettinati I. Delfino L. Dinarello C.A. Rubartelli A. The rate of interleukin-1β secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. J. Biol. Chem. 2011 286 31 27069 27080 10.1074/jbc.M110.203398 21628463
    [Google Scholar]
  63. Divakaruni A.S. Jastroch M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat. Metab. 2022 4 8 978 994 10.1038/s42255‑022‑00619‑4 35971004
    [Google Scholar]
  64. Nowak W.N. Deng J. Ruan X.Z. Xu Q. Reactive oxygen species generation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017 37 5 e41 e52 10.1161/ATVBAHA.117.309228 28446473
    [Google Scholar]
  65. James A.M. Murphy M.P. How mitochondrial damage affects cell function. J. Biomed. Sci. 2002 9 6 475 487 10.1007/BF02254975 12372986
    [Google Scholar]
  66. Lee S. Sheck L. Crowston J.G. Van Bergen N.J. O’Neill E.C. O’Hare F. Kong Y.X.G. Chrysostomou V. Vincent A.L. Trounce I.A. Impaired complex-I-linked respiration and ATP synthesis in primary open-angle glaucoma patient lymphoblasts. Invest. Ophthalmol. Vis. Sci. 2012 53 4 2431 2437 10.1167/iovs.12‑9596 22427588
    [Google Scholar]
  67. Thelen M.P. Wirth B. Kye M.J. Mitochondrial defects in the respiratory complex I contribute to impaired translational initiation via ROS and energy homeostasis in SMA motor neurons. Acta Neuropathol. Commun. 2020 8 1 223 10.1186/s40478‑020‑01101‑6 33353564
    [Google Scholar]
  68. Lamantea E. Carrara F. Mariotti C. Morandi L. Tiranti V. Zeviani M. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul. Disord. 2002 12 1 49 52 10.1016/S0960‑8966(01)00244‑9 11731284
    [Google Scholar]
  69. Carossa V. Ghelli A. Tropeano C.V. Valentino M.L. Iommarini L. Maresca A. Caporali L. La Morgia C. Liguori R. Barboni P. Carbonelli M. Rizzo G. Tonon C. Lodi R. Martinuzzi A. De Nardo V. Rugolo M. Ferretti L. Gandini F. Pala M. Achilli A. Olivieri A. Torroni A. Carelli V. A novel in-frame 18-bp microdeletion in MT-CYB causes a multisystem disorder with prominent exercise intolerance. Hum. Mutat. 2014 35 8 954 958 10.1002/humu.22596 24863938
    [Google Scholar]
  70. Protasoni M. Pérez-Pérez R. Lobo-Jarne T. Harbour M.E. Ding S. Peñas A. Diaz F. Moraes C.T. Fearnley I.M. Zeviani M. Ugalde C. Fernández-Vizarra E. Respiratory supercomplexes act as a platform for complex III ‐mediated maturation of human mitochondrial complexes I and IV. EMBO J. 2020 39 3 e102817 10.15252/embj.2019102817 31912925
    [Google Scholar]
  71. Lenaz G. Baracca A. Barbero G. Bergamini C. Dalmonte M.E. Del Sole M. Faccioli M. Falasca A. Fato R. Genova M.L. Sgarbi G. Solaini G. Mitochondrial respiratory chain super-complex I–III in physiology and pathology. Biochim. Biophys. Acta Bioenerg. 2010 1797 6-7 633 640 10.1016/j.bbabio.2010.01.025 20116362
    [Google Scholar]
  72. Orekhov A.N. Zhuravlev A.D. Vinokurov A.Y. Nikiforov N.G. Omelchenko A.V. Sukhorukov V.N. Sinyov V.V. Sobenin I.A. Defective mitophagy impairs response to inflammatory activation of macrophage-like cells. Curr. Med. Chem. 2024 31 10.2174/0109298673294643240228105957 38441018
    [Google Scholar]
  73. Orekhov A.N. Summerhill V.I. Khotina V.A. Popov M.A. Uzokov J.K. Sukhorukov V.N. Role of mitochondria in the chronification of inflammation: Focus on dysfunctional mitophagy and mitochondrial DNA mutations. Gene Expr. 2023 22 4 329 344 10.14218/GE.2023.00061
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323639240926095549
Loading
/content/journals/cmc/10.2174/0109298673323639240926095549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test